Browse

You are looking at 21 - 25 of 25 items for :

  • Journal of the Atmospheric Sciences x
  • Jets and Annular Structures in Geophysical Fluids (Jets) x
  • Refine by Access: Content accessible to me x
Clear All
Robert X. Black and Brent A. McDaniel

Abstract

A lag composite analysis is performed of the zonal-mean structure and dynamics of Northern Hemisphere stratospheric final warming (SFW) events. SFW events are linked to distinct zonal wind deceleration signatures in the stratosphere and troposphere. The period of strongest stratospheric decelerations (SD) is marked by a concomitant reduction in the high-latitude tropospheric westerlies. However, a subsequent period of tropospheric decelerations (TD) occurs while the stratospheric circulation relaxes toward climatological conditions. During SFW onset, a wavenumber-1 disturbance at stratospheric altitudes evolves into a circumpolar anticyclonic circulation anomaly.

Transformed Eulerian-mean dynamical diagnoses reveal that the SD period is characterized by an anomalous upward Eliassen–Palm (EP) signature at high latitudes extending from the surface to the middle stratosphere. The associated wave-driving pattern consists of zonal decelerations extending from the upper troposphere to the midstratosphere. Piecewise potential vorticity tendency analyses further indicate that zonal wind decelerations in the lower and middle troposphere result, at least in part, from the direct response to latitudinal redistributions of potential vorticity occurring in the lower stratosphere. The TD period exhibits a distinct dynamical behavior with anomalous downward EP fluxes in the high-latitude stratosphere as the zero zonal wind line descends toward the tropopause. This simultaneously allows the stratospheric polar vortex to radiatively recover while providing anomalous upper-tropospheric zonal decelerations (as tropospheric Rossby wave activity is vertically trapped in the high-latitude troposphere). The tropospheric decelerations that occur during the TD period are regarded as a subsequent indirect consequence of SFW events.

Full access
Robert X. Black and Brent A. McDaniel

Abstract

A composite observational analysis is presented demonstrating that austral stratospheric final warming (SFW) events provide a substantial organizing influence upon the large-scale atmospheric circulation in the Southern Hemisphere. In particular, the annual weakening of high-latitude westerlies in the upper troposphere and stratosphere is accelerated during SFW onset. This behavior is associated with a coherent annular circulation change with zonal wind decelerations (accelerations) at high (low) latitudes. The high-latitude stratospheric decelerations are induced by the anomalous wave driving of upward-propagating tropospheric waves. Longitudinally asymmetric circulation changes occur in the lower troposphere during SFW onset with regionally localized height increases (decreases) at subpolar (middle) latitudes. Importantly, the tropospheric and stratospheric circulation change patterns identified here are structurally distinct from the Southern Annular Mode. It is concluded that SFW events are linked to interannual atmospheric variability with potential bearing upon weather and climate prediction.

Full access
Gang Chen, Isaac M. Held, and Walter A. Robinson

Abstract

The sensitivity to surface friction of the latitude of the surface westerlies and the associated eddy-driven midlatitude jet is studied in an idealized dry GCM. The westerlies move poleward as the friction is reduced in strength. An increase in the eastward phase speed of midlatitude eddies is implicated as playing a central role in this shift.

This shift in latitude is mainly determined by changes in the friction on the zonal mean flow rather than the friction on the eddies. If the friction on the zonal mean is reduced instantaneously, the response reveals two distinctive adjustment time scales. In the fast adjustment over the first 10–20 days, there is an increase in the barotropic component of zonal winds and a substantial decrease in the eddy kinetic energy; the shift in the surface westerlies and jet latitude occurs in a slower adjustment. The space–time eddy momentum flux spectra suggest that the key to the shift is a poleward movement in the subtropical critical latitude associated with the faster eastward phase speeds in the dominant midlatitude eddies. The view is supported by simulating the upper-tropospheric dynamics in a stochastically stirred nonlinear shallow water model.

Full access
O. Martius, C. Schwierz, and H. C. Davies

Abstract

Breaking waves on the tropopause are viewed as potential vorticity (PV) streamers on middle-world isentropic levels. A Northern Hemisphere winter climatology of the streamers’ spatial distribution and meridional orientation is derived from the 40-yr ECMWF Re-Analysis (ERA-40) dataset, and used to assess the nature and frequency of occurrence of breaking synoptic-scale waves. The streamers are grouped into two classes related to the so-called cyclonic (LC2) and anticyclonic (LC1) patterns, and the ambient wind strength and wind shear is also noted.

It is shown that the occurrence of cyclonic and anticyclonic PV streamers exhibits a distinct spatial variability in the horizontal and the vertical. The majority of cyclonic PV streamers are found on lower isentropic levels that intersect the tropopause at more poleward latitudes, whereas anticyclonic streamers predominate at higher elevations in the subtropics.

An analysis of the streamer patterns for the two phases of the North Atlantic Oscillation (NAO) reveals significant differences in the location and frequency of both cyclonic and anticyclonic streamers in the Euro–Atlantic region on the 310-K isentropic level. Likewise, for the two phases of the ENSO and the Pacific–North American (PNA) pattern, there are marked differences in the frequency pattern of cyclonic streamers. An examination of the tropopause-level hemispheric flow pattern at the time of and prior to a streamer’s formation indicates a linkage to the presence or absence of double jet structures.

Full access
M. L. R. Liberato, J. M. Castanheira, L. de la Torre, C. C. DaCamara, and L. Gimeno

Abstract

A study is performed on the energetics of planetary wave forcing associated with the variability of the northern winter polar vortex. The analysis relies on a three-dimensional normal mode expansion of the atmospheric general circulation that allows partitioning the total (i.e., kinetic + available potential) atmospheric energy into the energy associated with Rossby and inertio-gravity modes with barotropic and baroclinic vertical structures. The analysis mainly departs from traditional ones in respect to the wave forcing, which is here assessed in terms of total energy amounts associated with the waves instead of heat and momentum fluxes. Such an approach provides a sounder framework than traditional ones based on Eliassen–Palm (EP) flux diagnostics of wave propagation and related concepts of refractive indices and critical lines, which are strictly valid only in the cases of small-amplitude waves and in the context of the Wentzel–Kramers–Brillouin–Jeffries (WKBJ) approximation.

Positive (negative) anomalies of the energy associated with the first two baroclinic modes of the planetary Rossby wave with zonal wavenumber 1 are followed by a downward progression of negative (positive) anomalies of the vortex strength. A signature of the vortex vacillation is also well apparent in the lagged correlation curves between the wave energy and the vortex strength. The analysis of the correlations between individual Rossby modes and the vortex strength further confirmed the result from linear theory that the waves that force the vortex are those associated with the largest zonal and meridional scales.

The two composite analyses of displacement- and split-type stratospheric sudden warming (SSW) events have revealed different dynamics. Displacement-type SSWs are forced by positive anomalies of the energy associated with the first two baroclinic modes of planetary Rossby waves with zonal wavenumber 1; split-type SSWs are in turn forced by positive anomalies of the energy associated with the planetary Rossby wave with zonal wavenumber 2, and the barotropic mode appears as the most important component. In respect to stratospheric final warming (SFW) events, obtained results suggest that the wave dynamics is similar to the one in displacement-type SSW events.

Full access