Browse
Abstract
A preindustrial control run and an ensemble of twentieth-century integrations of the Community Climate System Model, version 4 (CCSM4), are evaluated for Antarctic sea ice climatology, modes of variability, trends, and covariance with related physical variables such as surface temperature and sea level pressure. Compared to observations, the mean ice cover is too extensive in all months. This is in part related to excessively strong westerly winds over ~50°–60°S, which drive a large equatorward meridional ice transport and enhanced ice growth near the continent and also connected with a cold bias in the Southern Ocean. In spite of these biases in the climatology, the model’s sea ice variability compares well to observations. The leading mode of austral winter sea ice concentration exhibits a dipole structure with anomalies of opposite sign in the Atlantic and Pacific sectors. Both the El Niño–Southern Oscillation and the southern annular mode (SAM) project onto this mode. In twentieth-century integrations, Antarctic sea ice area exhibits significant decreasing annual trends in all six ensemble members from 1950 to 2005, in apparent contrast to observations that suggest a modest ice area increase since 1979. Two ensemble members show insignificant changes when restricted to 1979–2005. The ensemble mean shows a significant increase in the austral summer SAM index over 1960–2005 and 1979–2005 that compares well with the observed SAM trend. However, Antarctic warming and sea ice loss in the model are closely connected to each other and not to the trend in the SAM.
Abstract
A preindustrial control run and an ensemble of twentieth-century integrations of the Community Climate System Model, version 4 (CCSM4), are evaluated for Antarctic sea ice climatology, modes of variability, trends, and covariance with related physical variables such as surface temperature and sea level pressure. Compared to observations, the mean ice cover is too extensive in all months. This is in part related to excessively strong westerly winds over ~50°–60°S, which drive a large equatorward meridional ice transport and enhanced ice growth near the continent and also connected with a cold bias in the Southern Ocean. In spite of these biases in the climatology, the model’s sea ice variability compares well to observations. The leading mode of austral winter sea ice concentration exhibits a dipole structure with anomalies of opposite sign in the Atlantic and Pacific sectors. Both the El Niño–Southern Oscillation and the southern annular mode (SAM) project onto this mode. In twentieth-century integrations, Antarctic sea ice area exhibits significant decreasing annual trends in all six ensemble members from 1950 to 2005, in apparent contrast to observations that suggest a modest ice area increase since 1979. Two ensemble members show insignificant changes when restricted to 1979–2005. The ensemble mean shows a significant increase in the austral summer SAM index over 1960–2005 and 1979–2005 that compares well with the observed SAM trend. However, Antarctic warming and sea ice loss in the model are closely connected to each other and not to the trend in the SAM.
Abstract
The Community Earth System Model, version 1 (CESM1) is evaluated with two coupled atmosphere–land simulations. The CTRL (control) simulation represents crops as unmanaged grasses, while CROP represents a crop managed simulation that includes special algorithms for midlatitude corn, soybean, and cereal phenology and carbon allocation. CROP has a more realistic leaf area index (LAI) for crops than CTRL. CROP reduces winter LAI and represents the spring planting and fall harvest explicitly. At the peak of the growing season, CROP simulates higher crop LAI. These changes generally reduce the latent heat flux but not around peak LAI (late spring/early summer). In midwestern North America, where corn, soybean, and cereal abundance is high, simulated peak summer precipitation declines and agrees better with observations, particularly when crops emerge late as is found from a late planting sensitivity simulation (LateP). Differences between the CROP and LateP simulations underscore the importance of simulating crop planting and harvest dates correctly. On the biogeochemistry side, the annual cycle of net ecosystem exchange (NEE) also improves in CROP relative to Ameriflux site observations. For a global perspective, the authors diagnose annual cycles of CO2 from the simulated NEE (CO2 is not prognostic in these simulations) and compare against representative GLOBALVIEW monitoring stations. The authors find an increased (thus also improved) amplitude of the annual cycle in CROP. These regional and global-scale refinements from improvements in the simulated plant phenology have promising implications for the development of the CESM and particularly for simulations with prognostic atmospheric CO2.
Abstract
The Community Earth System Model, version 1 (CESM1) is evaluated with two coupled atmosphere–land simulations. The CTRL (control) simulation represents crops as unmanaged grasses, while CROP represents a crop managed simulation that includes special algorithms for midlatitude corn, soybean, and cereal phenology and carbon allocation. CROP has a more realistic leaf area index (LAI) for crops than CTRL. CROP reduces winter LAI and represents the spring planting and fall harvest explicitly. At the peak of the growing season, CROP simulates higher crop LAI. These changes generally reduce the latent heat flux but not around peak LAI (late spring/early summer). In midwestern North America, where corn, soybean, and cereal abundance is high, simulated peak summer precipitation declines and agrees better with observations, particularly when crops emerge late as is found from a late planting sensitivity simulation (LateP). Differences between the CROP and LateP simulations underscore the importance of simulating crop planting and harvest dates correctly. On the biogeochemistry side, the annual cycle of net ecosystem exchange (NEE) also improves in CROP relative to Ameriflux site observations. For a global perspective, the authors diagnose annual cycles of CO2 from the simulated NEE (CO2 is not prognostic in these simulations) and compare against representative GLOBALVIEW monitoring stations. The authors find an increased (thus also improved) amplitude of the annual cycle in CROP. These regional and global-scale refinements from improvements in the simulated plant phenology have promising implications for the development of the CESM and particularly for simulations with prognostic atmospheric CO2.
Abstract
This study analyzes important aspects of the tropical Atlantic Ocean from simulations of the fourth version of the Community Climate System Model (CCSM4): the mean sea surface temperature (SST) and wind stress, the Atlantic warm pools, the principal modes of SST variability, and the heat budget in the Benguela region. The main goal was to assess the similarities and differences between the CCSM4 simulations and observations. The results indicate that the tropical Atlantic overall is realistic in CCSM4. However, there are still significant biases in the CCSM4 Atlantic SSTs, with a colder tropical North Atlantic and a hotter tropical South Atlantic, that are related to biases in the wind stress. These are also reflected in the Atlantic warm pools in April and September, with its volume greater than in observations in April and smaller than in observations in September. The variability of SSTs in the tropical Atlantic is well represented in CCSM4. However, in the equatorial and tropical South Atlantic regions, CCSM4 has two distinct modes of variability, in contrast to observed behavior. A model heat budget analysis of the Benguela region indicates that the variability of the upper-ocean temperature is dominated by vertical advection, followed by meridional advection.
Abstract
This study analyzes important aspects of the tropical Atlantic Ocean from simulations of the fourth version of the Community Climate System Model (CCSM4): the mean sea surface temperature (SST) and wind stress, the Atlantic warm pools, the principal modes of SST variability, and the heat budget in the Benguela region. The main goal was to assess the similarities and differences between the CCSM4 simulations and observations. The results indicate that the tropical Atlantic overall is realistic in CCSM4. However, there are still significant biases in the CCSM4 Atlantic SSTs, with a colder tropical North Atlantic and a hotter tropical South Atlantic, that are related to biases in the wind stress. These are also reflected in the Atlantic warm pools in April and September, with its volume greater than in observations in April and smaller than in observations in September. The variability of SSTs in the tropical Atlantic is well represented in CCSM4. However, in the equatorial and tropical South Atlantic regions, CCSM4 has two distinct modes of variability, in contrast to observed behavior. A model heat budget analysis of the Benguela region indicates that the variability of the upper-ocean temperature is dominated by vertical advection, followed by meridional advection.
Abstract
Results from a suite of ensembles of twenty-first-century climate projections made using the Community Climate System Model, version 4 (CCSM4) are analyzed to document model bias and to explore possible future changes in air temperature, precipitation, and snow cover over North America. Large biases still exist in all analyzed fields in this version of the model, and the necessary assumption in future climate projections is therefore that the bias persists into the future, such that the differences in a field between two time periods are meaningful indications of potential changes. Projected temperature increases show strong regional patterns with spatial similarities for all the emissions scenarios considered, although there are considerable differences in the magnitude of the projected change. Projections indicate an increase in total precipitation over much of North America for all emissions scenarios, with the exception of the Southwest United States. All of North America except parts of northern Canada shows a projected decrease in snow cover over the twenty-first century.
Abstract
Results from a suite of ensembles of twenty-first-century climate projections made using the Community Climate System Model, version 4 (CCSM4) are analyzed to document model bias and to explore possible future changes in air temperature, precipitation, and snow cover over North America. Large biases still exist in all analyzed fields in this version of the model, and the necessary assumption in future climate projections is therefore that the bias persists into the future, such that the differences in a field between two time periods are meaningful indications of potential changes. Projected temperature increases show strong regional patterns with spatial similarities for all the emissions scenarios considered, although there are considerable differences in the magnitude of the projected change. Projections indicate an increase in total precipitation over much of North America for all emissions scenarios, with the exception of the Southwest United States. All of North America except parts of northern Canada shows a projected decrease in snow cover over the twenty-first century.
Abstract
The low-resolution version of the Community Climate System Model, version 4 (CCSM4) is a computationally efficient alternative to the intermediate and standard resolution versions of this fully coupled climate system model. It employs an atmospheric horizontal grid of 3.75° × 3.75° and 26 levels in the vertical with a spectral dynamical core (T31) and an oceanic horizontal grid that consists of a nominal 3° resolution with 60 levels in the vertical. This low-resolution version (T31x3) can be used for a variety of applications including long equilibrium simulations, development work, and sensitivity studies. The T31x3 model is validated for modern conditions by comparing to available observations. Significant problems exist for Northern Hemisphere Arctic locales where sea ice extent and thickness are excessive. This is partially due to low heat transport in T31x3, which translates into a globally averaged sea surface temperature (SST) bias of −1.54°C compared to observational estimates from the 1870–99 historical record and a bias of −1.26°C compared to observations from the 1986–2005 historical record. Maximum zonal wind stress magnitude in the Southern Hemisphere matches observational estimates over the ocean, although its placement is incorrectly displaced equatorward. Aspects of climate variability in T31x3 compare to observed variability, especially so for ENSO where the amplitude and period approximate observations. T31x3 surface temperature anomaly trends for the twentieth century also follow observations. An examination of the T31x3 model relative to the intermediate CCSM4 resolution (finite volume dynamical core 1.9° × 2.5°) for preindustrial conditions shows the T31x3 model approximates this solution for climate state and variability metrics examined here.
Abstract
The low-resolution version of the Community Climate System Model, version 4 (CCSM4) is a computationally efficient alternative to the intermediate and standard resolution versions of this fully coupled climate system model. It employs an atmospheric horizontal grid of 3.75° × 3.75° and 26 levels in the vertical with a spectral dynamical core (T31) and an oceanic horizontal grid that consists of a nominal 3° resolution with 60 levels in the vertical. This low-resolution version (T31x3) can be used for a variety of applications including long equilibrium simulations, development work, and sensitivity studies. The T31x3 model is validated for modern conditions by comparing to available observations. Significant problems exist for Northern Hemisphere Arctic locales where sea ice extent and thickness are excessive. This is partially due to low heat transport in T31x3, which translates into a globally averaged sea surface temperature (SST) bias of −1.54°C compared to observational estimates from the 1870–99 historical record and a bias of −1.26°C compared to observations from the 1986–2005 historical record. Maximum zonal wind stress magnitude in the Southern Hemisphere matches observational estimates over the ocean, although its placement is incorrectly displaced equatorward. Aspects of climate variability in T31x3 compare to observed variability, especially so for ENSO where the amplitude and period approximate observations. T31x3 surface temperature anomaly trends for the twentieth century also follow observations. An examination of the T31x3 model relative to the intermediate CCSM4 resolution (finite volume dynamical core 1.9° × 2.5°) for preindustrial conditions shows the T31x3 model approximates this solution for climate state and variability metrics examined here.
Abstract
Results are presented from experiments performed with the Community Climate System Model, version 4 (CCSM4) for the Coupled Model Intercomparison Project phase 5 (CMIP5). These include multiple ensemble members of twentieth-century climate with anthropogenic and natural forcings as well as single-forcing runs, sensitivity experiments with sulfate aerosol forcing, twenty-first-century representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100–2300. Equilibrium climate sensitivity of CCSM4 is 3.20°C, and the transient climate response is 1.73°C. Global surface temperatures averaged for the last 20 years of the twenty-first century compared to the 1986–2005 reference period for six-member ensembles from CCSM4 are +0.85°, +1.64°, +2.09°, and +3.53°C for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. The ocean meridional overturning circulation (MOC) in the Atlantic, which weakens during the twentieth century in the model, nearly recovers to early twentieth-century values in RCP2.6, partially recovers in RCP4.5 and RCP6, and does not recover by 2100 in RCP8.5. Heat wave intensity is projected to increase almost everywhere in CCSM4 in a future warmer climate, with the magnitude of the increase proportional to the forcing. Precipitation intensity is also projected to increase, with dry days increasing in most subtropical areas. For future climate, there is almost no summer sea ice left in the Arctic in the high RCP8.5 scenario by 2100, but in the low RCP2.6 scenario there is substantial sea ice remaining in summer at the end of the century.
Abstract
Results are presented from experiments performed with the Community Climate System Model, version 4 (CCSM4) for the Coupled Model Intercomparison Project phase 5 (CMIP5). These include multiple ensemble members of twentieth-century climate with anthropogenic and natural forcings as well as single-forcing runs, sensitivity experiments with sulfate aerosol forcing, twenty-first-century representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100–2300. Equilibrium climate sensitivity of CCSM4 is 3.20°C, and the transient climate response is 1.73°C. Global surface temperatures averaged for the last 20 years of the twenty-first century compared to the 1986–2005 reference period for six-member ensembles from CCSM4 are +0.85°, +1.64°, +2.09°, and +3.53°C for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. The ocean meridional overturning circulation (MOC) in the Atlantic, which weakens during the twentieth century in the model, nearly recovers to early twentieth-century values in RCP2.6, partially recovers in RCP4.5 and RCP6, and does not recover by 2100 in RCP8.5. Heat wave intensity is projected to increase almost everywhere in CCSM4 in a future warmer climate, with the magnitude of the increase proportional to the forcing. Precipitation intensity is also projected to increase, with dry days increasing in most subtropical areas. For future climate, there is almost no summer sea ice left in the Arctic in the high RCP8.5 scenario by 2100, but in the low RCP2.6 scenario there is substantial sea ice remaining in summer at the end of the century.
Abstract
The Community Land Model, version 4 (CLM4) includes the option to run the prognostic carbon–nitrogen (CN) model with dynamic vegetation (CNDV). CNDV, which simulates unmanaged vegetation, modifies the CN framework to implement plant biogeography updates. CNDV simulates a reasonable present-day distribution of plant functional types but underestimates tundra vegetation cover. The CNDV simulation is compared against a CN simulation using a vegetation distribution generated by CNDV and against a carbon-only simulation with prescribed nitrogen limitation (CDV). The comparisons focus on the means and variability of carbon pools and fluxes and biophysical factors, such as albedo, surface radiation, and heat fluxes. The study assesses the relative importance of incorporating interactive nitrogen (CDV to CNDV) versus interactive biogeography (CN to CNDV) in present-day equilibrium simulations. None of the three configurations performs consistently better in simulating carbon or biophysical variables compared to observational estimates. The interactive nitrogen (N) cycle reduces annual means and interannual variability more than dynamic vegetation. Dynamic vegetation reduces seasonal variability in leaf area and, therefore, in moisture fluxes and surface albedo. The interactive N cycle has the opposite effect of enhancing seasonal variability in moisture fluxes and albedo. CNDV contains greater degrees of freedom than CN or CDV by adjusting both through nitrogen–carbon interactions and through vegetation establishment and mortality. Thus, in these equilibrium simulations, CNDV acts as a stronger “regulator” of variability compared to the other configurations. Discussed are plausible explanations for this behavior, which has been shown in past studies to improve climate simulations through better represented climate–vegetation interactions.
Abstract
The Community Land Model, version 4 (CLM4) includes the option to run the prognostic carbon–nitrogen (CN) model with dynamic vegetation (CNDV). CNDV, which simulates unmanaged vegetation, modifies the CN framework to implement plant biogeography updates. CNDV simulates a reasonable present-day distribution of plant functional types but underestimates tundra vegetation cover. The CNDV simulation is compared against a CN simulation using a vegetation distribution generated by CNDV and against a carbon-only simulation with prescribed nitrogen limitation (CDV). The comparisons focus on the means and variability of carbon pools and fluxes and biophysical factors, such as albedo, surface radiation, and heat fluxes. The study assesses the relative importance of incorporating interactive nitrogen (CDV to CNDV) versus interactive biogeography (CN to CNDV) in present-day equilibrium simulations. None of the three configurations performs consistently better in simulating carbon or biophysical variables compared to observational estimates. The interactive nitrogen (N) cycle reduces annual means and interannual variability more than dynamic vegetation. Dynamic vegetation reduces seasonal variability in leaf area and, therefore, in moisture fluxes and surface albedo. The interactive N cycle has the opposite effect of enhancing seasonal variability in moisture fluxes and albedo. CNDV contains greater degrees of freedom than CN or CDV by adjusting both through nitrogen–carbon interactions and through vegetation establishment and mortality. Thus, in these equilibrium simulations, CNDV acts as a stronger “regulator” of variability compared to the other configurations. Discussed are plausible explanations for this behavior, which has been shown in past studies to improve climate simulations through better represented climate–vegetation interactions.
Abstract
This paper focuses on diagnosing biases in the seasonal climate of the tropical Atlantic in the twentieth-century simulation of the Community Climate System Model, version 4 (CCSM4). The biases appear in both atmospheric and oceanic components. Mean sea level pressure is erroneously high by a few millibars in the subtropical highs and erroneously low in the polar lows (similar to CCSM3). As a result, surface winds in the tropics are ~1 m s−1 too strong. Excess winds cause excess cooling and depressed SSTs north of the equator. However, south of the equator SST is erroneously high due to the presence of additional warming effects. The region of highest SST bias is close to southern Africa near the mean latitude of the Angola–Benguela Front (ABF). Comparison of CCSM4 to ocean simulations of various resolutions suggests that insufficient horizontal resolution leads to the insufficient northward transport of cool water along this coast and an erroneous southward stretching of the ABF. A similar problem arises in the coupled model if the atmospheric component produces alongshore winds that are too weak. Erroneously warm coastal SSTs spread westward through a combination of advection and positive air–sea feedback involving marine stratocumulus clouds.
This study thus highlights three aspects to improve to reduce bias in coupled simulations of the tropical Atlantic: 1) large-scale atmospheric pressure fields; 2) the parameterization of stratocumulus clouds; and 3) the processes, including winds and ocean model resolution, that lead to errors in seasonal SST along southwestern Africa. Improvements of the latter require horizontal resolution much finer than the 1° currently used in many climate models.
Abstract
This paper focuses on diagnosing biases in the seasonal climate of the tropical Atlantic in the twentieth-century simulation of the Community Climate System Model, version 4 (CCSM4). The biases appear in both atmospheric and oceanic components. Mean sea level pressure is erroneously high by a few millibars in the subtropical highs and erroneously low in the polar lows (similar to CCSM3). As a result, surface winds in the tropics are ~1 m s−1 too strong. Excess winds cause excess cooling and depressed SSTs north of the equator. However, south of the equator SST is erroneously high due to the presence of additional warming effects. The region of highest SST bias is close to southern Africa near the mean latitude of the Angola–Benguela Front (ABF). Comparison of CCSM4 to ocean simulations of various resolutions suggests that insufficient horizontal resolution leads to the insufficient northward transport of cool water along this coast and an erroneous southward stretching of the ABF. A similar problem arises in the coupled model if the atmospheric component produces alongshore winds that are too weak. Erroneously warm coastal SSTs spread westward through a combination of advection and positive air–sea feedback involving marine stratocumulus clouds.
This study thus highlights three aspects to improve to reduce bias in coupled simulations of the tropical Atlantic: 1) large-scale atmospheric pressure fields; 2) the parameterization of stratocumulus clouds; and 3) the processes, including winds and ocean model resolution, that lead to errors in seasonal SST along southwestern Africa. Improvements of the latter require horizontal resolution much finer than the 1° currently used in many climate models.
Abstract
Equilibrium climate sensitivity of the Community Climate System Model, version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. This study uses the radiative kernel technique to show that, from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude and the shortwave cloud feedback increases. These two warming effects are partially canceled by cooling because of slight decreases in the global mean water vapor feedback and longwave cloud feedback from CCSM3 to CCSM4.
A new formulation of the mixed layer, slab-ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab-ocean model version for both CCSM3 and CCSM4. The authors argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.
Abstract
Equilibrium climate sensitivity of the Community Climate System Model, version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. This study uses the radiative kernel technique to show that, from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude and the shortwave cloud feedback increases. These two warming effects are partially canceled by cooling because of slight decreases in the global mean water vapor feedback and longwave cloud feedback from CCSM3 to CCSM4.
A new formulation of the mixed layer, slab-ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab-ocean model version for both CCSM3 and CCSM4. The authors argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.
Abstract
To assess the climate impacts of historical and projected land cover change in the Community Climate System Model, version 4 (CCSM4), new time series of transient Community Land Model, version 4 (CLM4) plant functional type (PFT) and wood harvest parameters have been developed. The new parameters capture the dynamics of the Coupled Model Intercomparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005 and for the four representative concentration pathway (RCP) scenarios from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 reveals that the model produced a historical cumulative land use flux of 127.7 PgC from 1850 to 2005, which is in general agreement with other global estimates of 156 PgC for the same period. The biogeophysical impacts of the transient land cover change parameters were cooling of the near-surface atmosphere over land by −0.1°C, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was counteracted by decreasing snow albedo from black carbon deposition and high-latitude warming. The future CCSM4 RCP simulations showed that the CLM4 transient PFT parameters can be used to represent a wide range of land cover change scenarios. In the reforestation scenario of RCP 4.5, CCSM4 simulated a drawdown of 67.3 PgC from the atmosphere into the terrestrial ecosystem and product pools. By contrast the RCP 8.5 scenario with deforestation and high wood harvest resulted in the release of 30.3 PgC currently stored in the ecosystem.
Abstract
To assess the climate impacts of historical and projected land cover change in the Community Climate System Model, version 4 (CCSM4), new time series of transient Community Land Model, version 4 (CLM4) plant functional type (PFT) and wood harvest parameters have been developed. The new parameters capture the dynamics of the Coupled Model Intercomparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005 and for the four representative concentration pathway (RCP) scenarios from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 reveals that the model produced a historical cumulative land use flux of 127.7 PgC from 1850 to 2005, which is in general agreement with other global estimates of 156 PgC for the same period. The biogeophysical impacts of the transient land cover change parameters were cooling of the near-surface atmosphere over land by −0.1°C, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was counteracted by decreasing snow albedo from black carbon deposition and high-latitude warming. The future CCSM4 RCP simulations showed that the CLM4 transient PFT parameters can be used to represent a wide range of land cover change scenarios. In the reforestation scenario of RCP 4.5, CCSM4 simulated a drawdown of 67.3 PgC from the atmosphere into the terrestrial ecosystem and product pools. By contrast the RCP 8.5 scenario with deforestation and high wood harvest resulted in the release of 30.3 PgC currently stored in the ecosystem.