Browse
Abstract
This paper develops a mathematical model and statistical methods to quantify trends in presence/absence observations of snow cover (not depths) and applies these in an analysis of Northern Hemispheric observations extracted from satellite flyovers during 1967–2021. A two-state Markov chain model with periodic dynamics is introduced to analyze changes in the data in a cell by cell fashion. Trends, converted to the number of weeks of snow cover lost/gained per century, are estimated for each study cell. Uncertainty margins for these trends are developed from the model and used to assess the significance of the trend estimates. Cells with questionable data quality are explicitly identified. Among trustworthy cells, snow presence is seen to be declining in almost twice as many cells as it is advancing. While Arctic and southern latitude snow presence is found to be rapidly receding, other locations, such as eastern Canada, are experiencing advancing snow cover.
Significance Statement
This project quantifies how the Northern Hemisphere’s snow cover has recently changed. Snow cover plays a critical role in the global energy balance due to its high albedo and insulating characteristics and is therefore a prominent indicator of climate change. On a regional scale, the spatial consistency of snow cover influences surface temperatures via variations in absorbed solar radiation, while continental-scale snow cover acts to maintain thermal stability in the Arctic and subarctic regions, leading to spatial and temporal impacts on global circulation patterns. Changing snow presence in Arctic regions could influence large-scale releases of carbon and methane gas. Given the importance of snow cover, understanding its trends enhances our understanding of climate change.
Abstract
This paper develops a mathematical model and statistical methods to quantify trends in presence/absence observations of snow cover (not depths) and applies these in an analysis of Northern Hemispheric observations extracted from satellite flyovers during 1967–2021. A two-state Markov chain model with periodic dynamics is introduced to analyze changes in the data in a cell by cell fashion. Trends, converted to the number of weeks of snow cover lost/gained per century, are estimated for each study cell. Uncertainty margins for these trends are developed from the model and used to assess the significance of the trend estimates. Cells with questionable data quality are explicitly identified. Among trustworthy cells, snow presence is seen to be declining in almost twice as many cells as it is advancing. While Arctic and southern latitude snow presence is found to be rapidly receding, other locations, such as eastern Canada, are experiencing advancing snow cover.
Significance Statement
This project quantifies how the Northern Hemisphere’s snow cover has recently changed. Snow cover plays a critical role in the global energy balance due to its high albedo and insulating characteristics and is therefore a prominent indicator of climate change. On a regional scale, the spatial consistency of snow cover influences surface temperatures via variations in absorbed solar radiation, while continental-scale snow cover acts to maintain thermal stability in the Arctic and subarctic regions, leading to spatial and temporal impacts on global circulation patterns. Changing snow presence in Arctic regions could influence large-scale releases of carbon and methane gas. Given the importance of snow cover, understanding its trends enhances our understanding of climate change.
Abstract
The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM; IMERG) is a high-resolution gridded precipitation dataset widely used around the world. This study assessed the performance of the half-hourly IMERG v06 Early and Final Runs over a 5-yr period versus 19 high-quality surface stations in the Great Lakes region of North America. This assessment not only looked at precipitation occurrence and amount, but also studied the IMERG Quality Index (QI) and errors related to passive microwave (PMW) sources. Analysis of bias in accumulated precipitation amount and precipitation occurrence statistics suggests that IMERG presents various uncertainties with respect to time scale, meteorological season, PMW source, QI, and land surface type. Results indicate that 1) the cold season’s (November–April) larger relative bias can be mitigated via backward morphing; 2) IMERG 6-h precipitation amount scored best in the warmest season (JJA) with a consistent overestimation of the frequency bias index − 1 (FBI-1); 3) the performance of five PMW sources is affected by the season to different degrees; 4) in terms of some metrics, skills do not always enhance with increasing QI; 5) local lake effects lead to higher correlation and equitable threat score (ETS) for the stations closest to the lakes. Results of this study will be beneficial to both developers and users of IMERG precipitation products.
Significance Statement
The purpose of the study was to assess the performance of the gridded precipitation product from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) version 6 over the Great Lakes region of North America. The assessment performs a statistical comparison of precipitation amounts from IMERG versus surface stations as a function of time scale, season, precipitation event threshold, and input source among satellites. Interpretation of the results identifies shortcomings in the IMERG algorithms, particularly in extreme precipitation events and over ice-covered surfaces. The results also describe spatial variability in the IMERG data quality due to the complex geography of the study area and offer a clear threshold in the Quality Index (QI) flag for optimal application of the precipitation products.
Abstract
The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM; IMERG) is a high-resolution gridded precipitation dataset widely used around the world. This study assessed the performance of the half-hourly IMERG v06 Early and Final Runs over a 5-yr period versus 19 high-quality surface stations in the Great Lakes region of North America. This assessment not only looked at precipitation occurrence and amount, but also studied the IMERG Quality Index (QI) and errors related to passive microwave (PMW) sources. Analysis of bias in accumulated precipitation amount and precipitation occurrence statistics suggests that IMERG presents various uncertainties with respect to time scale, meteorological season, PMW source, QI, and land surface type. Results indicate that 1) the cold season’s (November–April) larger relative bias can be mitigated via backward morphing; 2) IMERG 6-h precipitation amount scored best in the warmest season (JJA) with a consistent overestimation of the frequency bias index − 1 (FBI-1); 3) the performance of five PMW sources is affected by the season to different degrees; 4) in terms of some metrics, skills do not always enhance with increasing QI; 5) local lake effects lead to higher correlation and equitable threat score (ETS) for the stations closest to the lakes. Results of this study will be beneficial to both developers and users of IMERG precipitation products.
Significance Statement
The purpose of the study was to assess the performance of the gridded precipitation product from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) version 6 over the Great Lakes region of North America. The assessment performs a statistical comparison of precipitation amounts from IMERG versus surface stations as a function of time scale, season, precipitation event threshold, and input source among satellites. Interpretation of the results identifies shortcomings in the IMERG algorithms, particularly in extreme precipitation events and over ice-covered surfaces. The results also describe spatial variability in the IMERG data quality due to the complex geography of the study area and offer a clear threshold in the Quality Index (QI) flag for optimal application of the precipitation products.
Abstract
The enhancement of precipitation over the mountain regions of Southern California, in conjunction with mesoscale and synoptic-scale forcings, can result in high-intensity, short-duration extreme precipitation events (EPEs) that are often associated with hazardous impacts. In this study, candidate upstream atmospheric precursors at relevant spatiotemporal scales to such hazards are explored using a WRF mesoscale model with 5-km grid spacing and an hourly temporal resolution. This high-resolution model, once validated against observations, is used to discern statistically significant physics-based signals between hypothetical mesoscale forcings and the modeled precipitation response. Specifically, the role of upstream instability in modeled EPEs is indexed by convective available potential energy (CAPE) and is examined for two mountainous regions of Southern California at several lag times. A Monte Carlo approach reveals statistically significant differences between the relationship of CAPE associated with EPEs in comparison to the analogous relationship for any precipitation event. These findings hold even with accounting for the well-established role of favorably oriented low-level moisture flux in orographic precipitation. This could indicate that atmospheric instability plays a role in providing additional lifting mechanisms, in conjunction with orographic and synoptic-scale forcings, to facilitate the high short-duration precipitation intensities that have been observed in the region. This diagnostic exploratory study provides additional candidate indicators of predictability of such EPEs at higher spatiotemporal scales than previous work, based on mesoscale model physics. Further analysis should examine the identified precursors using observational data with adequate resolution.
Abstract
The enhancement of precipitation over the mountain regions of Southern California, in conjunction with mesoscale and synoptic-scale forcings, can result in high-intensity, short-duration extreme precipitation events (EPEs) that are often associated with hazardous impacts. In this study, candidate upstream atmospheric precursors at relevant spatiotemporal scales to such hazards are explored using a WRF mesoscale model with 5-km grid spacing and an hourly temporal resolution. This high-resolution model, once validated against observations, is used to discern statistically significant physics-based signals between hypothetical mesoscale forcings and the modeled precipitation response. Specifically, the role of upstream instability in modeled EPEs is indexed by convective available potential energy (CAPE) and is examined for two mountainous regions of Southern California at several lag times. A Monte Carlo approach reveals statistically significant differences between the relationship of CAPE associated with EPEs in comparison to the analogous relationship for any precipitation event. These findings hold even with accounting for the well-established role of favorably oriented low-level moisture flux in orographic precipitation. This could indicate that atmospheric instability plays a role in providing additional lifting mechanisms, in conjunction with orographic and synoptic-scale forcings, to facilitate the high short-duration precipitation intensities that have been observed in the region. This diagnostic exploratory study provides additional candidate indicators of predictability of such EPEs at higher spatiotemporal scales than previous work, based on mesoscale model physics. Further analysis should examine the identified precursors using observational data with adequate resolution.
Abstract
Expanding shrubs in the Arctic trap blowing snow, increasing snow height and accelerating permafrost warming. Topography also affects snow height as snow accumulates in hollows. The respective roles of topography and erect vegetation in snow accumulation were investigated using a UAV-borne lidar at two nearby contrasted sites in northern Quebec, Canada. The North site featured tall vegetation up to 2.5 m high, moderate snow height, and smooth topography. The South site featured lower vegetation, greater snow height, and rougher topography. There was little correlation between topography and vegetation height at both sites. Vegetation lower than snow height had very little effect on snow height. When vegetation protruded above the snow, snow height was well correlated with vegetation height. The topographic position index (TPI) was well correlated with snow height when it was not masked by the effect of protruding vegetation. The North site with taller vegetation therefore showed a good correlation between vegetation height and snow height, R 2 = 0.37, versus R 2 = 0.04 at the South site. Regarding topography, the reverse was observed between TPI and snow height, with R 2 = 0.29 at the North site and R 2 = 0.67 at the South site. The combination of vegetation height and TPI improved the prediction of snow height at the North site (R 2 = 0.59) but not at the South site because vegetation height has little influence there. Vegetation was therefore the main factor determining snow height when it protruded above the snow. When it did not protrude, snow height was mostly determined by topography.
Significance Statement
Wind-induced snow drifting is a major snow redistribution process in the Arctic. Shrubs trap drifting snow, and drifting snow accumulates in hollows. Determining the respective roles of both these processes in snow accumulation is required to predict permafrost temperature and its emission of greenhouse gases, because thicker snow limits permafrost winter cooling. Using a UAV-borne lidar, we have determined snow height distribution over two contrasted sites in the Canadian low Arctic, with varied vegetation height and topography. When snow height exceeds vegetation height, topography is a good predictor of snow height, with negligible effect of buried vegetation. When vegetation protrudes above the snow, combining both topography and vegetation height is required for a good prediction of snow height.
Abstract
Expanding shrubs in the Arctic trap blowing snow, increasing snow height and accelerating permafrost warming. Topography also affects snow height as snow accumulates in hollows. The respective roles of topography and erect vegetation in snow accumulation were investigated using a UAV-borne lidar at two nearby contrasted sites in northern Quebec, Canada. The North site featured tall vegetation up to 2.5 m high, moderate snow height, and smooth topography. The South site featured lower vegetation, greater snow height, and rougher topography. There was little correlation between topography and vegetation height at both sites. Vegetation lower than snow height had very little effect on snow height. When vegetation protruded above the snow, snow height was well correlated with vegetation height. The topographic position index (TPI) was well correlated with snow height when it was not masked by the effect of protruding vegetation. The North site with taller vegetation therefore showed a good correlation between vegetation height and snow height, R 2 = 0.37, versus R 2 = 0.04 at the South site. Regarding topography, the reverse was observed between TPI and snow height, with R 2 = 0.29 at the North site and R 2 = 0.67 at the South site. The combination of vegetation height and TPI improved the prediction of snow height at the North site (R 2 = 0.59) but not at the South site because vegetation height has little influence there. Vegetation was therefore the main factor determining snow height when it protruded above the snow. When it did not protrude, snow height was mostly determined by topography.
Significance Statement
Wind-induced snow drifting is a major snow redistribution process in the Arctic. Shrubs trap drifting snow, and drifting snow accumulates in hollows. Determining the respective roles of both these processes in snow accumulation is required to predict permafrost temperature and its emission of greenhouse gases, because thicker snow limits permafrost winter cooling. Using a UAV-borne lidar, we have determined snow height distribution over two contrasted sites in the Canadian low Arctic, with varied vegetation height and topography. When snow height exceeds vegetation height, topography is a good predictor of snow height, with negligible effect of buried vegetation. When vegetation protrudes above the snow, combining both topography and vegetation height is required for a good prediction of snow height.
Abstract
Runoff generated by land surface models (LSMs) is extensively used to predict future river discharge under global warming. However, the structural bias of LSMs, the precipitation bias of the climate model, and other factors could cause the runoff to be biased. A model intercomparison study can help understand LSM behavior. Traditional model intercomparison can discover output variation and evaluate performance, but explaining the reason for the difference is challenging. This study developed a novel method to identify the reasons for disparities and suggest improvements. Consequently, we investigated the impacts of model settings by adopting the settings of another model in one model until it can mimic similar features in its output. Hence, we developed a process called the “emulation model.” We employed two LSMs [Simple Biosphere with Urban Canopy (SiBUC) and Meteorological Research Institute Simple Biosphere model (MRI-SiB)] in the Thai River basin. SiBUC produced a higher surface runoff than MRI-SiB, and the development of the MRI-SiB emulation revealed the cause of this variation. The differences in runoff characteristics affected streamflow estimation. For instance, the SiBUC peak discharge was faster and higher than observed in the dry year. Conversely, there was a tendency to underestimate the flow estimated by MRI-SiB runoff during the transition from dry to wet seasons. Incorporating other model settings can alleviate the shortcomings of each model. Overall, the proposed method can identify the strengths and weaknesses of a model and enhance the reproducibility of the hydrological characteristics of the observed discharge in the basin.
Significance Statement
This study aims to develop a new methodology for model intercomparison to identify the reasons for model output variation. Understanding why models behave differently is important to enhancing the reliability of model prediction. Our findings guide what affects disparities in land surface model runoff-based streamflow estimation, which will help reduce the uncertainty of future flood and drought predictions.
Abstract
Runoff generated by land surface models (LSMs) is extensively used to predict future river discharge under global warming. However, the structural bias of LSMs, the precipitation bias of the climate model, and other factors could cause the runoff to be biased. A model intercomparison study can help understand LSM behavior. Traditional model intercomparison can discover output variation and evaluate performance, but explaining the reason for the difference is challenging. This study developed a novel method to identify the reasons for disparities and suggest improvements. Consequently, we investigated the impacts of model settings by adopting the settings of another model in one model until it can mimic similar features in its output. Hence, we developed a process called the “emulation model.” We employed two LSMs [Simple Biosphere with Urban Canopy (SiBUC) and Meteorological Research Institute Simple Biosphere model (MRI-SiB)] in the Thai River basin. SiBUC produced a higher surface runoff than MRI-SiB, and the development of the MRI-SiB emulation revealed the cause of this variation. The differences in runoff characteristics affected streamflow estimation. For instance, the SiBUC peak discharge was faster and higher than observed in the dry year. Conversely, there was a tendency to underestimate the flow estimated by MRI-SiB runoff during the transition from dry to wet seasons. Incorporating other model settings can alleviate the shortcomings of each model. Overall, the proposed method can identify the strengths and weaknesses of a model and enhance the reproducibility of the hydrological characteristics of the observed discharge in the basin.
Significance Statement
This study aims to develop a new methodology for model intercomparison to identify the reasons for model output variation. Understanding why models behave differently is important to enhancing the reliability of model prediction. Our findings guide what affects disparities in land surface model runoff-based streamflow estimation, which will help reduce the uncertainty of future flood and drought predictions.
Abstract
The surface precipitation network in Canada suffers from large data gaps due to the challenge of covering a large country with a low population density. A proof-of-concept for an optimal network design is proposed to more efficiently estimate precipitation in Canada with the design goal of minimizing the interpolation uncertainty. The network design is based on a statistical model of precipitation that accounts for intermittency and non-Gaussianity of precipitation. Our results indicate that the greatest needs for new stations are in British Columbia, where coastal and mountain climate leads to more uncertainty in precipitation amounts, while the Prairie Provinces (Alberta, Saskatchewan, and Manitoba) could gain efficiencies by reducing their network size. Despite the current low density of stations in the territories north of Canada, these drier and colder regions only have a moderate need for more stations, mostly in the mountainous regions of Yukon. However, from a spatially varying wind undercatch measurement error model, it is shown that these northern regions have greatest need for higher-accuracy measurements.
Significance Statement
The proposed methodology can guide in the optimal placement of precipitation gauges across a large country such as Canada, which will provide value for money in how rain and snow are monitored.
Abstract
The surface precipitation network in Canada suffers from large data gaps due to the challenge of covering a large country with a low population density. A proof-of-concept for an optimal network design is proposed to more efficiently estimate precipitation in Canada with the design goal of minimizing the interpolation uncertainty. The network design is based on a statistical model of precipitation that accounts for intermittency and non-Gaussianity of precipitation. Our results indicate that the greatest needs for new stations are in British Columbia, where coastal and mountain climate leads to more uncertainty in precipitation amounts, while the Prairie Provinces (Alberta, Saskatchewan, and Manitoba) could gain efficiencies by reducing their network size. Despite the current low density of stations in the territories north of Canada, these drier and colder regions only have a moderate need for more stations, mostly in the mountainous regions of Yukon. However, from a spatially varying wind undercatch measurement error model, it is shown that these northern regions have greatest need for higher-accuracy measurements.
Significance Statement
The proposed methodology can guide in the optimal placement of precipitation gauges across a large country such as Canada, which will provide value for money in how rain and snow are monitored.
Abstract
The processes underlying heavy rainfall in the higher elevations of the Himalayas are still not well known despite their importance. Here, we examine the detailed process causing a heavy rainfall event, observed by our rain gauge network in the Rolwaling valley, eastern Nepal Himalayas, using ERA5 and a regional cloud-resolving numerical simulation. Heavy precipitation (112 mm day−1) was observed on 8 July 2019 at Dongang (2790 m above sea level). Most of the precipitation (81 mm) occurred during 1900–2300 local time (LT). The synoptic-scale environment is characterized by a monsoon low pressure system (LPS) over northeastern India. The LPS lifted moisture upward from the lower troposphere and then horizontally transported it into the eastern Nepal Himalayas within the middle troposphere, increasing the content of the water vapor around Dongang. A mesoscale convective system passed over Dongang around the time of the intense precipitation. The numerical simulation showed that surface heat fluxes prevailed under the middle tropospheric (∼500 hPa) southeasterly flow associated with the LPS around a mountain ridge on the upwind side of Dongang until 1900 LT, enhancing convective instability. Topographic lifting led to the release of the enhanced instability, which triggered the development of a mesoscale precipitation system. The southeasterly flow pushed the precipitation system northward, which then passed over Dongang during 2000–2200 LT, resulting in heavy precipitation. Thus, we conclude that the heavy precipitation came from the multiscale processes such as three-dimensional moisture transport driven by the LPS and the diurnal variation in heat fluxes from the land surface.
Significance Statement
Precipitation in the Himalayas is closely related to the hydrological cycle, floods, and landslide disasters in South Asia. Thus, elucidating the features of precipitation in the Himalayas is important. This study explored multiscale processes leading to a heavy precipitation event that was observed on 8 July 2019 at Dongang in the Rolwaling valley of the eastern Nepal Himalayas. We identified new processes producing heavy precipitation in the Himalayas: the three-dimensional synoptic-scale moisture transport driven by a monsoon low pressure system and the effect of the diurnal variation in heat fluxes from the land surface on the development and movement of a mesoscale precipitation system causing heavy precipitation. These findings broaden our understanding of heavy precipitation in the Himalayas.
Abstract
The processes underlying heavy rainfall in the higher elevations of the Himalayas are still not well known despite their importance. Here, we examine the detailed process causing a heavy rainfall event, observed by our rain gauge network in the Rolwaling valley, eastern Nepal Himalayas, using ERA5 and a regional cloud-resolving numerical simulation. Heavy precipitation (112 mm day−1) was observed on 8 July 2019 at Dongang (2790 m above sea level). Most of the precipitation (81 mm) occurred during 1900–2300 local time (LT). The synoptic-scale environment is characterized by a monsoon low pressure system (LPS) over northeastern India. The LPS lifted moisture upward from the lower troposphere and then horizontally transported it into the eastern Nepal Himalayas within the middle troposphere, increasing the content of the water vapor around Dongang. A mesoscale convective system passed over Dongang around the time of the intense precipitation. The numerical simulation showed that surface heat fluxes prevailed under the middle tropospheric (∼500 hPa) southeasterly flow associated with the LPS around a mountain ridge on the upwind side of Dongang until 1900 LT, enhancing convective instability. Topographic lifting led to the release of the enhanced instability, which triggered the development of a mesoscale precipitation system. The southeasterly flow pushed the precipitation system northward, which then passed over Dongang during 2000–2200 LT, resulting in heavy precipitation. Thus, we conclude that the heavy precipitation came from the multiscale processes such as three-dimensional moisture transport driven by the LPS and the diurnal variation in heat fluxes from the land surface.
Significance Statement
Precipitation in the Himalayas is closely related to the hydrological cycle, floods, and landslide disasters in South Asia. Thus, elucidating the features of precipitation in the Himalayas is important. This study explored multiscale processes leading to a heavy precipitation event that was observed on 8 July 2019 at Dongang in the Rolwaling valley of the eastern Nepal Himalayas. We identified new processes producing heavy precipitation in the Himalayas: the three-dimensional synoptic-scale moisture transport driven by a monsoon low pressure system and the effect of the diurnal variation in heat fluxes from the land surface on the development and movement of a mesoscale precipitation system causing heavy precipitation. These findings broaden our understanding of heavy precipitation in the Himalayas.