Browse

You are looking at 31 - 40 of 11,388 items for :

  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All
Margo S. Andrews
,
Vittorio A. Gensini
,
Alex M. Haberlie
,
Walker S. Ashley
,
Allison C. Michaelis
, and
Mateusz Taszarek

Abstract

Elevated mixed layers (EMLs) influence the severe convective storm climatology in the contiguous United States (CONUS), playing an important role in the initiation, sustenance, and suppression of storms. This study creates a high-resolution climatology of the EML to analyze variability and potential changes in EML frequency and characteristics for the first time. An objective algorithm is applied to ERA5 to detect EMLs, defined in part as layers of steep lapse rates (≥8.0°C km−1) at least 200 hPa thick, in the CONUS and northern Mexico from 1979 to 2021. EMLs are most frequent over the Great Plains in spring and summer, with a standard deviation of 4–10 EML days per year highlighting sizable interannual variability. Mean convective inhibition associated with the EML’s capping inversion suggests many EMLs prohibit convection, although—like nearly all EML characteristics—there is considerable spread and notable seasonal variability. In the High Plains, statistically significant increases in EML days (4–5 more days per decade) coincide with warmer EML bases and steeper EML lapse rates, driven by warming and drying in the low levels of the western CONUS during the study period. Additionally, increases in EML base temperatures result in significantly more EML-related convective inhibition over the Great Plains, which may continue to have implications for convective storm frequency, intensity, severe perils, and precipitation if this trend persists.

Significance Statement

Elevated mixed layers (EMLs) play a role in the spatiotemporal frequency of severe convective storms and precipitation across the contiguous United States and northern Mexico. This research creates a detailed EML climatology from a modern reanalysis dataset to uncover patterns and potential changes in EML frequency and associated meteorological characteristics. EMLs are most common over the Great Plains in spring and summer, but show significant variability year-to-year. Robust increases in the number of days with EMLs have occurred since 1979 across the High Plains. Lapse rates associated with EMLs have trended steeper, in part due to warmer EML base temperatures. This has resulted in increasing EML convective inhibition, which has important implications for regional climate.

Open access
Yuwei Xie
,
Wenjun Zhang
,
Suqiong Hu
, and
Feng Jiang

Abstract

Sea surface temperature (SST) variability in the East China Sea–Kuroshio (EK) region has important implications for the surrounding weather, climate, and marine ecology. The year-to-year variations of the EK SST are expectedly linked to El Niño–Southern Oscillation (ENSO), the predominant predictability source of seasonal-to-interannual climate variability. Surprisingly, no significant SST signal is observed in the EK region when focusing on the ENSO autumn–winter season with the persistent and pronounced SST anomalies in the tropical Pacific. We find that a remarkable seasonal reversal appears in the ENSO–EK SST connection, shifting from a negative relationship in autumn [Aug(0)–Oct(0)] to a positive relationship in winter [Dec(0)–Feb(1)]. This reversal is mainly attributed to the seasonally varying ENSO-associated western North Pacific (WNP) atmospheric circulation patterns. During ENSO autumns, the anomalous WNP anticyclone is confined south of 20°N, which is accompanied with cyclonic circulation anomalies in the EK region. The associated anomalous northerly wind tends to enhance the background northerly wind, thereby facilitating the local SST cooling mainly via the wind–evaporation–SST effect. In the subsequent winter, the ENSO-related WNP anticyclonic anomalies intensify and extend toward the EK region. Consequently, the weakened background northerly wind induced by southerly wind anomalies leads to the increase of downward latent and sensible heat flux in the EK region, fostering the local SST warming. The observed seasonal reversal of ENSO impacts can be evidenced by the tropical Pacific pacemaker experiments, emphasizing the importance of seasonally modulated ENSO teleconnection and holding implications for the local SST climate prediction.

Open access
Zhuoyi Li
,
Qing Yang
,
Zhuguo Ma
,
Peili Wu
,
Yawen Duan
,
Mingxing Li
, and
Ziyan Zheng

Abstract

In China, the topography, climate, ecology, hydrology, and human environment vary greatly from southeast to northwest, and a typical natural and social environmental transition zone (i.e., comprehensive transition zone) exists near the “Hu Huanyong line,” which is a famous demographic dividing line in China, known as the Hu zone. Dry and wet climate changes in the Hu zone can have a significant impact on terrestrial ecosystems and hydrological conditions, ultimately affecting human–land relations. However, there is still a lack of clear understanding of environmental changes in the context of climate change in the Hu zone. Here, a quantitative analysis of climate change and its impacts on terrestrial hydrology and ecosystems from 1951 to 2020 is presented. The results showed that there exists a significant drying trend in the Hu zone and a dramatic decrease in terrestrial water storage (TWS), indicating that the environment has become worse. Conversely, from the perspective of significant greening, the environment has improved. This contradiction is mainly due to climate change dominating the depletion of TWS, while the increase in vegetation greenness is more driven by human activities including agricultural management and ecological restoration, offsetting to some extent the negative impact of water scarcity on vegetation growth.

Significance Statement

The Hu zone is a transition zone between southeast and northwest China, which is a sensitive area under climate change as well as key region for coordinated development. The purpose of this study is to reveal the long-term climate change in the Hu zone and its impacts on hydrology and ecology. Our results indicate a significant drying trend in this zone over the last 70 years, which led to a substantial reduction in water storage. However, the vegetation coverage increased due to human activities. This study provides guidance for agricultural structure adjustment and ecological protection in transition zones. Future research should focus more on the assessment and risk management of dry/wet changes in climate transition areas around the world.

Open access
Luca Famooss Paolini
,
Nour-Eddine Omrani
,
Alessio Bellucci
,
Panos J. Athanasiadis
,
Paolo Ruggieri
,
Casey R. Patrizio
, and
Noel Keenlyside

Abstract

The interaction between the North Atlantic Oscillation (NAO) and the latitudinal shifts of the Gulf Stream sea surface temperature front (GSF) has been the subject of extensive investigations. There are indications of nonstationarity in this interaction, but differences in the methodologies used in previous studies make it difficult to draw consistent conclusions. Furthermore, there is a lack of consensus on the key mechanisms underlying the response of the GSF to the NAO. This study assesses the possible nonstationarity in the NAO–GSF interaction and the mechanisms underlying this interaction during 1950–2020, using reanalysis data. Results show that the NAO and GSF indices covary on the decadal time scale but only during 1972–2018. A secondary peak in the NAO–GSF covariability emerges on multiannual time scales but only during 2005–15. The nonstationarity in the decadal NAO–GSF covariability is also manifested in variations in their lead–lag relationship. Indeed, the NAO tends to lead the GSF shifts by 3 years during 1972–90 and by 2 years during 1990–2018. The response of the GSF to the NAO at the decadal time scale can be interpreted as the joint effect of the fast response of wind-driven oceanic circulation, the response of deep oceanic circulation, and the propagation of Rossby waves. However, there is evidence of Rossby wave propagation only during 1972–90. Here it is suggested that the nonstationarity of Rossby wave propagation caused the time lag between the NAO and the GSF shifts on the decadal time scale to differ between the two time periods.

Open access
A. P. Williams
,
K. J. Anchukaitis
, and
A. M. Varuolo-Clarke

Abstract

Cool-season (November–March) precipitation contributes critically to California’s water resources and flood risk. In the Sierra Nevada, approximately half of cool-season precipitation is derived from a small proportion of storms classified as atmospheric rivers (ARs). The frequency and intensity of ARs are highly variable from year to year and unreliable climate teleconnections limit forecasting. However, previous research provides intriguing evidence of cycles with biennial (2.2 years) and decadal (10–20 years) periodicities in Sierra Nevada cool-season precipitation, suggesting it is not purely stochastic. To identify the source of this cyclicity, we decompose daily precipitation records (1949–2022) into contributions from ARs versus non-ARs, as well as into variations in frequency and intensity. We find that the biennial and decadal spectral peaks in Sierra Nevada precipitation totals are entirely due to precipitation delivered by ARs, and primarily due to variations in the frequency of days with AR precipitation. While total non-AR precipitation correlates with sea surface temperature (SST) and atmospheric pressure patterns associated with the El Niño–Southern Oscillation, AR precipitation shows no consistent remote teleconnections at any periodicity. Supporting this finding, atmospheric simulations forced by observed SSTs do not reproduce the biennial or decadal precipitation variations identified in observations. These results, combined with the lack of long-term stable cycles in previously published tree-ring reconstructions, suggest that the observed biennial and decadal quasi-cyclicity in Sierra Nevada precipitation is unreliable as a forecasting tool.

Significance Statement

In California’s Sierra Nevada, where most of the state’s above-ground water resources originate, cool-season precipitation totals exhibited year-to-year and decadal cyclicity over the past century. Long-range forecasts are notoriously unskillful in this region, so nonrandom cycles would be intriguing to water managers challenged to simultaneously minimize flood and drought risk. Over 1949–2022, precipitation cycles were driven by variations in the number of atmospheric river (AR) storms per year even though ARs account for just half of total precipitation. These findings bring us a step closer to understanding the causes of precipitation cyclicity, but we find no evidence that the cycles were underpinned by larger-scale ocean–atmosphere circulations so we caution against relying on continued cycles into the future.

Open access
Grace Kortum
,
Gabriel A. Vecchi
,
Tsung-Lin Hsieh
, and
Wenchang Yang

Abstract

This study investigates the relative roles of sea surface temperature–forced climate changes and weather variability in driving the observed eastward shift of Atlantic hurricane tracks over the period from 1970 to 2021. A 10-member initial condition ensemble with a ∼25-km horizontal resolution tropical cyclone permitting atmospheric model (GFDL AM2.5-C360) with identical sea surface temperature and radiative forcing time series was analyzed in conjunction with historical hurricane track observations. While a frequency increase was recovered by all the simulations, the observed multidecadal eastward shift in tracks was not robust across the ensemble members, indicating that it included a substantial contribution from weather-scale variability. A statistical model was developed to simulate expected storm tracks based on genesis location and steering flow, and it was used to conduct experiments testing the roles of changing genesis location and changing steering flow in producing the multidecadal weather-driven shifts in storm tracks. These experiments indicated that shifts in genesis location were a substantially larger driver of these multidecadal track changes than changes in steering flow. The substantial impact of weather on tracks indicates that there may be limited predictability for multidecadal track changes like those observed, although basinwide frequency has greater potential for prediction. Additionally, understanding changes in genesis location appears essential to understanding changes in track location.

Significance Statement

From the 1970s to the present, there has been an increase in the frequency of North Atlantic hurricanes, but they have also shifted in location to the east, away from land. We explore whether this shift in hurricanes’ locations was caused by climatic factors or randomness to understand if and how these trends will persist. We also consider whether the shift was due to a change in where hurricanes started or how they moved over their lifespan. Analyzing data from observed and simulated hurricanes, we find that the shift was made more likely by climate factors, but ultimately occurred due to random variability in the hurricanes’ starting locations. These results suggest a higher uncertainty in the future location and impact of hurricanes and highlight the importance of studying why hurricanes originate where they do.

Open access
Tong Li
,
Xuebin Zhang
, and
Zhihong Jiang

Abstract

Weighting models according to their performance has been used to produce multimodel climate change projections. But the added value of model weighting for future projection is not always examined. Here we apply an imperfect model framework to evaluate the added value of model weighting in projecting summer temperature changes over China. Members of large-ensemble simulations by three climate models of different climate sensitivities are used as pseudo-observations for the past and the future. Performance of the models participating in the phase 6 of the Coupled Model Intercomparison Project (CMIP6) are evaluated against the pseudo-observations based on simulated historical climatology and trends in global, regional, and local temperatures to determine the model weights for future projection. The weighted projections are then compared with the pseudo-observations in the future period. We find that regional trend as a metric of model performance yields generally better skill for future projection, while past climatology as performance metric does not lead to a significant improvement to projection. Trend at the grid-box scale is also not a good performance indicator as small-scale trend is highly uncertain. For the model weighting to be effective, the metric for evaluating the model’s performance must be relatable to future changes, with the response signal separable from internal variability. Projected summer warming based on model weighting is similar to that of unweighted projection but the 5th–95th-percentile uncertainty range of the weighted projection is 38% smaller with the reduction mainly in the upper bound, with the largest reduction appearing in southeast China.

Open access
Dylan Oldenburg
,
Young-Oh Kwon
,
Claude Frankignoul
,
Gokhan Danabasoglu
,
Stephen Yeager
, and
Who M. Kim

Abstract

Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. To quantitatively assess their respective roles, we use the 100-member Community Earth System Model, version 2 (CESM2), Large Ensemble over the 1920–2100 period. We first examine the Arctic Ocean warming in a heat budget framework by calculating the contributions from heat exchanges with atmosphere and sea ice and OHT across the Arctic Ocean gateways. Then we quantify how much anomalous heat from the ocean directly translates to sea ice loss and how much is lost to the atmosphere. We find that Arctic Ocean warming is driven primarily by increased OHT through the Barents Sea Opening, with additional contributions from the Fram Strait and Bering Strait OHTs. These OHT changes are driven mainly by warmer inflowing water rather than changes in volume transports across the gateways. The Arctic Ocean warming driven by OHT is partially damped by increased heat loss through the sea surface. Although absorbed shortwave radiation increases due to reduced surface albedo, this increase is compensated by increasing upwelling longwave radiation and latent heat loss. We also explicitly calculate the contributions of ocean–ice and atmosphere–ice heat fluxes to sea ice heat budget changes. Throughout the entire twentieth century as well as the early twenty-first century, the atmosphere is the main contributor to ice heat gain in summer, though the ocean’s role is not negligible. Over time, the ocean progressively becomes the main heat source for the ice as the ocean warms.

Significance Statement

Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. Here we use 100 simulations from the same climate model to analyze future warming and sea ice loss. We find that Arctic Ocean warming is primarily driven by increased OHT through the Barents Sea Opening, though the Fram and Bering Straits are also important. This increased OHT is primarily due to warmer inflowing water rather than changing ocean currents. This ocean heat gain is partially compensated by heat loss through the sea surface. During the twentieth century and early twenty-first century, sea ice loss is mainly linked to heat transferred from the atmosphere; however, over time, the ocean progressively becomes the most important contributor.

Open access
Ángel F. Adames Corraliza
and
Víctor C. Mayta

Abstract

Interactions between large-scale waves and the Hadley cell are examined using a linear two-layer model on an f plane. A linear meridional moisture gradient determines the strength of the idealized Hadley cell. The trade winds are in thermal wind balance with a weak temperature gradient (WTG). The mean meridional moisture gradient is unstable to synoptic-scale (horizontal scale of ∼1000 km) moisture modes that are advected westward by the trade winds, reminiscent of oceanic tropical depression–like waves. Meridional moisture advection causes the moisture modes to grow from “moisture-vortex instability” (MVI), resulting in a poleward eddy moisture flux that flattens the zonal-mean meridional moisture gradient, thereby weakening the Hadley cell. The amplification of waves at the expense of the zonal-mean meridional moisture gradient implies a downscale latent energy cascade. The eddy moisture flux is opposed by a regeneration of the meridional moisture gradient by the Hadley cell. These Hadley cell–moisture mode interactions are reminiscent of quasigeostrophic interactions, except that wave activity is due to column moisture variance rather than potential vorticity variance. The interactions can result in predator–prey cycles in moisture mode activity and Hadley cell strength that are akin to ITCZ breakdown. It is proposed that moisture modes are the tropical analog to midlatitude baroclinic waves. MVI is analogous to baroclinic instability, stirring latent energy in the same way that dry baroclinic eddies stir sensible heat. These results indicate that moisture modes stabilize the Hadley cell and may be as important as the latter in global energy transport.

Significance Statement

The tropics are characterized by steady circulations such as the Hadley cell as well as a menagerie of tropical weather systems. Despite progress in our understanding of both, little is known about how the mean circulations and the weather systems interact with one another. Here we show that tropical waves can grow by extracting moisture from the Hadley cell, thereby weakening it. They also transport moisture to higher latitudes. Our results challenge the notion that the Hadley cell is the sole transporter of energy out of the tropics and instead favor a view where tropical waves are also essential for the global energy balance. They dry the humid regions and moisten the drier regions via stirring.

Open access
Alexia Karwat
,
Christian L. E. Franzke
,
Joaquim G. Pinto
,
Sun-Seon Lee
, and
Richard Blender

Abstract

Extratropical cyclones are a dominant feature of the midlatitudes, and often occur as storm sequences. This phenomenon is known as cyclone clustering, which is common over regions like the eastern North Atlantic and western Europe. Here, intense clustered cyclones may lead to large cumulative socioeconomic impacts. There are several different approaches to quantify cyclone clustering, but a detailed evaluation on how clustering may change in a warmer climate is missing. We perform a cyclone clustering analysis for the Northern Hemisphere midlatitudes using the ERA5 reanalysis to characterize clustering during 1980–2020. Moreover, we use large ensemble simulations of the Community Earth System Model version 2 following the SSP3-7.0 scenario to compare clustering during 2060–2100 to 1980–2020. Our model simulations show significant enhancement in cyclone clustering over Europe for 3 and 4 cyclones within 7 days in the future decades, which is increasing by up to 25% on average during 2060–2100 compared to 1980–2020. In contrast, cyclone clustering decreases along the west coast of the United States and Canada by up to 24.3% and by 10.1% in the Gulf of Alaska for the same periods. In a warmer climate, clustered cyclones have lower minimum pressure and larger radii and depths compared to nonclustered events. Our findings suggest that change in future cyclone clustering depends on regions affected by global warming, with implications for the cumulative windstorm risk.

Significance Statement

Storm sequences like the one of December 1999 (Anatol, Lothar, and Martin) have led to large socioeconomic impacts in Europe. It is still unclear how such events will change under global warming. We analyze storm sequences in a reanalysis and a large climate model ensemble for recent (1980–2020) and future climate conditions (2060–2100). Our results show a significant enhancement of storm sequences over Europe for 3 and 4 storms within 7 days, while a decrease is found along the west coast of the United States, western Canada, and in the Gulf of Alaska in future decades. Our findings suggest that the characteristics of cyclone clustering may change in a warmer world, and thus also the associated impacts.

Open access