Browse

You are looking at 31 - 36 of 36 items for :

  • Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics x
  • Refine by Access: Content accessible to me x
Clear All
Wei-Ting Chen
,
Shih-Pei Hsu
,
Yuan-Huai Tsai
, and
Chung-Hsiung Sui

ABSTRACT

We studied the scale interactions of the convectively coupled Kelvin waves (KWs) over the South China Sea (SCS) and Maritime Continent (MC) during December 2016. Three KWs were observed near the equator in this month while the Madden–Julian oscillation (MJO) was inactive. The impacts of these KWs on the rainfall variability of various time scales are diagnosed, including synoptic disturbances, diurnal cycle (DC), and the onset of the Australian monsoon. Four interaction events between the KWs and the westward-propagating waves over the off-equatorial regions were examined; two events led to KW enhancements and the other two contributed to the formation of a tropical depression/tropical cyclone. Over the KW convectively active region of the MC, the DC of precipitation was enhanced in major islands and neighboring oceans. Over the land, the DC hot spots were modulated depending on the background winds and the terrain effects. Over the ocean, the “coastal regime” of the DC appeared at specific coastal areas. Last, the Australian summer monsoon onset occurred with the passage of a KW, which provided favorable conditions of low-level westerlies and initial convection over southern MC and the Arafura Sea. This effect may be helped by the warm sea surface temperature anomalies associated with the La Niña condition of this month. The current results showcase that KWs and their associated scale interactions can provide useful references for weather monitoring and forecast of this region when the MJO is absent.

Full access
Corinne B. Trott
,
Bulusu Subrahmanyam
,
Heather L. Roman-Stork
,
V. S. N. Murty
, and
C. Gnanaseelan

Abstract

Intraseasonal oscillations (ISOs) significantly impact southwest monsoon precipitation and Bay of Bengal (BoB) variability. The response of ISOs in sea surface salinity (SSS) to those in the atmosphere is investigated in the BoB from 2005 to 2017. The three intraseasonal processes examined in this study are the 30–90-day and 10–20-day ISOs and 3–7-day synoptic weather signals. A variety of salinity data from NASA’s Soil Moisture Active Passive (SMAP) and the European Space Agency’s (ESA’s) Soil Moisture and Ocean Salinity (SMOS) satellite missions and from reanalysis using the Hybrid Coordinate Ocean Model (HYCOM) and operational analysis of Climate Forecast System version 2 (CFSv2) were utilized for the study. It is found that the 30–90-day ISO salinity signal propagates northward following the northward propagation of convection and precipitation ISOs. The 10–20-day ISO in SSS and precipitation deviate largely in the northern BoB wherein the river runoff largely impacts the SSS. The weather systems strongly impact the 3–7-day signal in SSS prior to and after the southwest monsoon. Overall, we find that satellite salinity products captured better the SSS signal of ISO due to inherent inclusion of river runoff and mixed layer processes. CFSv2, in particular, underestimates the SSS signal due to the misrepresentation of river runoff in the model. This study highlights the need to include realistic riverine freshwater influx for better model simulations, as accurate salinity simulation is mandatory for the representation of air–sea coupling in models.

Full access
Sebastian Essink
,
Verena Hormann
,
Luca R. Centurioni
, and
Amala Mahadevan

Abstract

A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius L D , which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.

Full access
Wei-Ting Chen
,
Chien-Ming Wu
, and
Hsi-Yen Ma

Abstract

The present study aims to identify the precipitation bias associated with the interactions among fast physical processes in the Community Atmospheric Model, version 5 (CAM5), during the abrupt onset of the South China Sea (SCS) summer monsoon, a key precursor of the overall East Asia summer monsoon (EASM). The multiyear hindcast approach is utilized to obtain the well-constrained synoptic-scale horizontal circulation each year during the onset period from the years 1998 to 2012. In the pre-onset period, the ocean precipitation over the SCS is insufficiently suppressed in CAM5 hindcasts and thus weaker land–ocean precipitation contrasts. This is associated with the weaker and shallower convection simulated over the surrounding land, producing weaker local circulation within the SCS basin. In the post-onset period, rainfall of the organized convection over the Philippine coastal ocean is underestimated in the hindcasts, with overestimated upper-level heating. These biases are further elaborated as the underrepresentation of the convection diurnal cycle and coastal convection systems, as well as the issue of precipitation sensitivity to environmental moisture during the SCS onset period. The biases identified in hindcasts are consistent with the general bias of the EASM in the climate simulation of CAM5. The current results highlight that the appropriate representation of land–ocean–convection interactions over coastal areas can potentially improve the simulation of seasonal transition over the monsoon regions.

Full access
Adam V. Rydbeck
,
Tommy G. Jensen
, and
Matthew R. Igel

Abstract

The atmospheric response to sea surface temperature (SST) variations forced by oceanic downwelling equatorial Rossby waves is investigated using an idealized convection-resolving model. Downwelling equatorial Rossby waves sharpen SST gradients in the western Indian Ocean. Changes in SST cause the atmosphere to hydrostatically adjust, subsequently modulating the low-level wind field. In an idealized cloud model, surface wind speeds, surface moisture fluxes, and low-level precipitable water maximize near regions of strongest SST gradients, not necessarily in regions of warmest SST. Simulations utilizing the steepened SST gradient representative of periods with oceanic downwelling equatorial Rossby waves show enhanced patterns of surface convergence and precipitation that are linked to a strengthened zonally overturning circulation. During these conditions, convection is highly organized, clustering near the maximum SST gradient and ascending branch of the SST-induced overturning circulation. When the SST gradient is reduced, as occurs during periods of weak or absent oceanic equatorial Rossby waves, convection is much less organized and total rainfall is decreased. This demonstrates the previously observed upscale organization of convection and rainfall associated with oceanic downwelling equatorial Rossby waves in the western Indian Ocean. These results suggest that the enhancement of surface fluxes that results from a steepening of the SST gradient is the leading mechanism by which oceanic equatorial Rossby waves prime the atmospheric boundary layer for rapid convective development.

Full access
Dipanjan Chaudhuri
,
Debasis Sengupta
,
Eric D’Asaro
,
R. Venkatesan
, and
M. Ravichandran

Abstract

Cyclone Phailin, which developed over the Bay of Bengal in October 2013, was one of the strongest tropical cyclones to make landfall in India. We study the response of the salinity-stratified north Bay of Bengal to Cyclone Phailin with the help of hourly observations from three open-ocean moorings 200 km from the cyclone track, a mooring close to the cyclone track, daily sea surface salinity (SSS) from Aquarius, and a one-dimensional model. Before the arrival of Phailin, moored observations showed a shallow layer of low-salinity water lying above a deep, warm “barrier” layer. As the winds strengthened, upper-ocean mixing due to enhanced vertical shear of storm-generated currents led to a rapid increase of near-surface salinity. Sea surface temperature (SST) cooled very little, however, because the prestorm subsurface ocean was warm. Aquarius SSS increased by 1.5–3 psu over an area of nearly one million square kilometers in the north Bay of Bengal. A one-dimensional model, with initial conditions and surface forcing based on moored observations, shows that cyclone winds rapidly eroded the shallow, salinity-dominated density stratification and mixed the upper ocean to 40–50-m depth, consistent with observations. Model sensitivity experiments indicate that changes in ocean mixed layer temperature in response to Cyclone Phailin are small. A nearly isothermal, salinity-stratified barrier layer in the prestorm upper ocean has two effects. First, near-surface density stratification reduces the depth of vertical mixing. Second, mixing is confined to the nearly isothermal layer, resulting in little or no SST cooling.

Full access