Browse

You are looking at 31 - 40 of 12,428 items for :

  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All
Daniel D. B. Koll
,
Nadir Jeevanjee
, and
Nicholas J. Lutsko

Abstract

Climate models and observations robustly agree that Earth’s clear-sky longwave feedback has a value of about −2 W m−2 K−1, suggesting that this feedback can be estimated from first principles. In this study, we derive an analytic model for Earth’s clear-sky longwave feedback. Our approach uses a novel spectral decomposition that splits the feedback into four components: a surface Planck feedback and three atmospheric feedbacks from CO2, H2O, and the H2O continuum. We obtain analytic expressions for each of these terms, and the model can also be framed in terms of Simpson’s law and deviations therefrom. We validate the model by comparing it against line-by-line radiative transfer calculations across a wide range of climates. Additionally, the model qualitatively matches the spatial feedback maps of a comprehensive climate model. For present-day Earth, our analysis shows that the clear-sky longwave feedback is dominated by the surface in the global mean and in the dry subtropics; meanwhile, atmospheric feedbacks from CO2 and H2O become important in the inner tropics. Together, these results show that a spectral view of Earth’s clear-sky longwave feedback elucidates not only its global-mean magnitude, but also its spatial pattern and its state dependence across past and future climates.

Significance Statement

The climate feedback determines how much our planet warms due to changes in radiative forcing. For more than 50 years scientists have been predicting this feedback using complex numerical models. Except for cloud effects the numerical models largely agree, lending confidence to global warming predictions, but nobody has yet derived the feedback from simpler considerations. We show that Earth’s clear-sky longwave feedback can be estimated using only pen and paper. Our results confirm that numerical climate models get the right number for the right reasons, and allow us to explain regional and state variations of Earth’s climate feedback. These variations are difficult to understand solely from numerical models but are crucial for past and future climates.

Open access
Jiwang Ma
and
X. San Liang

Abstract

The typical blockings over the Pacific, Atlantic, and Ural Mountain regions are investigated for an understanding of their dynamical interactions in a unified treatment with their respective basic flows and high-frequency processes, respectively. Thanks to the localized nature of the new methodology as used in this study, for the first time we identify a dipolar structure (for each of the three regions) in the map of the interscale energy transfer from the basic flow to the composite blocking, with a positive center upstream and a negative center downstream. This indicates the crucial role of the instability of the basic flow in the maintenance of blockings, which has been overlooked due to the bulk nature of the spatially integrated energetics (by summing the transfer over the whole blocking, the two centers essentially cancel out, leaving an insignificant bulk transfer). For the interaction between the blocking and the high-frequency storms, the well-known critical role of the upscale forcing in blocking development is confirmed. But, unexpectedly, except for that over the Atlantic where the forcing exists throughout, over the other two regions the forcing is found to occur mainly downstream. This is quite different from what the classical theory, e.g., the famous eddy strain mechanism of Shutts, would predict.

Open access
Carsten Abraham
and
Colin Goldblatt

Abstract

Recently, we presented a classification of “primitive” relative humidity (RH) profiles into eight distinct clusters over Earth’s oceans, based on about 18 years (2003–20) of observations from the AIRS on NASA’s Aqua satellite. Here we investigate the seasonal variability and decadal trends, both in the vertical structure of these RH profiles, and in their associated area of occurrence. Since vertical structures (except in the marine boundary layer) of each RH class are generally robust across all seasons and change only weakly in a warming climate, seasonal or decadal changes to their occurrence areas shift patterns of global moisture distribution. Globally, the marine boundary layer exhibits nonlinear moistening effects after about 2010, the end of the warming hiatus. Annual time series of ocean areas dominated by RH classes have linear trends, which are positive only for the most moist and driest RH classes (in terms of the free troposphere) associated with deep convection and large-scale subsidence favoring conditions for low-level stratocumulus clouds, respectively. Based on estimated linear trends of RH-class occurrences and sea surface temperatures, we infer projected linear responses of RH in a warming climate. Ocean areas dominated by most moist and driest RH classes (in terms of the free atmosphere) are estimated to increase by about 1% and 2%, respectively (corresponding to about 2.5% K−1 and 4.5% K−1, respectively). The averaged global and tropical RH structure remain almost constant in a warming climate. While this is consistent with other studies, our results show how increases in most moist and dry areas compensate each other, indicating possible increases in the frequency or persistence of future extreme events.

Open access
Akshaya C. Nikumbh
,
A. B. S. Thakur
,
Arindam Chakraborty
,
G. S. Bhat
, and
Jai Sukhatme

Abstract

Large-scale extreme rainfall events (LEREs) over central India are produced by monsoon low pressure systems (LPSs) when assisted by a secondary cyclonic vortex (SCV). Both the LPS and the SCV are embedded in a monsoon trough and form mainly during the positive phase of the boreal summer intraseasonal oscillation. Here, we observe that tropical–extratropical interactions exist during LEREs. Using ray tracing, we show that extratropical Rossby waves propagate to the Indian subcontinent during the summer monsoon season. Stationary Rossby wave rays originating over the North Atlantic Ocean reach India following approximately a great circle path at midtropospheric levels. This pathway appears to play an important role in tropical–extratropical interactions during LEREs. Seventy-seven percent of LEREs are preceded by a North Atlantic blocking high and 90% by a quasi-stationary central Asian high. The Atlantic blocking high triggers a quasi-stationary Rossby wave response and strengthens the downstream central Asian high. In turn, the quasi-stationary central Asian high facilitates Rossby wave breaking, transporting high-PV streamers and cutoffs equatorward. The central Asian high is in close proximity to the monsoon trough in the mid- and lower troposphere. It interacts with the monsoon trough over the northwest Indian subcontinent. The equatorial monsoon trough is strengthened due to the supply of dynamic forcing and static instabilities from the extratropics. This additional forcing from the extratropics creates an environment that is conducive for LEREs.

Open access
Christopher Polster
and
Volkmar Wirth

Abstract

Recently, Nakamura and Huang proposed a theory of blocking onset based on the budget of finite-amplitude local wave activity on the midlatitude waveguide. Blocks form in their idealized model due to a mechanism that also describes the emergence of traffic jams in traffic theory. The current work investigates the development of a winter European block in terms of finite-amplitude local wave activity to evaluate the possible relevance of the “traffic jam” mechanism for the flow transition. Two hundred members of a medium-range ensemble forecast of the blocking onset period are analyzed with correlation- and cluster-based sensitivity techniques. Diagnostic evidence points to a traffic jam onset on 17 December 2016. Block development is sensitive to upstream Rossby wave activity up to 1.5 days prior to its initiation and consistent with expectations from the idealized theory. Eastward transport of finite-amplitude local wave activity in the southern part of the block is suppressed by nonlinear flux modification from the large-amplitude blocking pattern, consistent with the expected obstruction in the traffic jam model. The relationship of finite-amplitude local wave activity and its zonal flux as mapped by the ensemble exhibits established characteristics of a traffic jam. This study suggests that the traffic jam mechanism may play an important role in some cases of blocking onset and more generally that applying finite-amplitude local wave activity diagnostics to ensemble data is a promising approach for the further examination of individual onset events in light of the Nakamura and Huang theory.

Significance Statement

Blocking is an occasional phenomenon in the mid- and high-latitude atmosphere characterized by the stalling of weather systems. Episodes of blocking are linked to extreme weather but their occurrence is not completely understood. A recent theory suggests that blocks may form in the jet stream like traffic jams on a highway. The onset mechanism contained in the theory could explain why forecasts of blocking are sometimes poor. In this work, we investigate the formation of a 2016 European winter block in the context of the traffic jam theory. Though questions remain regarding the implications for forecast uncertainty, our findings strongly support the notion of a traffic jam onset.

Open access
Zuzana Procházková
,
Christopher G. Kruse
,
M. Joan Alexander
,
Lars Hoffmann
,
Julio T. Bacmeister
,
Laura Holt
,
Corwin Wright
,
Kaoru Sato
,
Sonja Gisinger
,
Manfred Ern
,
Markus Geldenhuys
,
Peter Preusse
, and
Petr Šácha

Abstract

Internal gravity waves (GWs) are ubiquitous in the atmosphere, making significant contributions to the mesoscale motions. Since the majority of their spectrum is unresolved in global circulation models, their effects need to be parameterized. In recent decades GWs have been increasingly studied in high-resolution simulations, which, unlike direct observations, allow us to explore full spatiotemporal variations of the resolved wave field. In our study we analyze and refine a traditional method for GW analysis in a high-resolution simulation on a regional domain around the Drake Passage. We show that GW momentum drag estimates based on the Gaussian high-pass filter method applied to separate GW perturbations from the background are sensitive to the choice of a cutoff parameter. The impact of the cutoff parameter is higher for horizontal fluxes of horizontal momentum, which indicates higher sensitivity for horizontally propagating waves. Two modified methods, which choose the parameter value from spectral information, are proposed. The dynamically determined cutoff is mostly higher than the traditional cutoff values around 500 km, leading to larger GW fluxes and drag, and varies with time and altitude. The differences between the traditional and the modified methods are especially pronounced during events with significant drag contributions from horizontal momentum fluxes.

Significance Statement

In this study, we highlight that the analysis of gravity wave activity from high-resolution datasets is a complex task with a pronounced sensitivity to the methodology, and we propose modified versions of a classical statistical gravity wave detection method enhanced by the spectral information. Although no optimal methodology exists to date, we show that the modified methods improve the accuracy of the gravity wave activity estimates, especially when oblique propagation plays a role.

Open access
Dong Ji
and
Fangli Qiao

Abstract

Recently, Ji and Qiao took into account the unbalanced components and derived an extended Sawyer–Eliassen (SE) equation. This study developed a new derivation of this extended SE equation from the perspective of restoring forces, and gives a physical interpretation for the coefficients that appear in the SE equation. For an unbalanced vortex, we demonstrated that the thermodynamic fields are only determined by the distribution of gradient wind, and thus, the gradient wind and thermodynamic fields always remain in balance as the unbalanced vortex evolves. Consequently, we attributed the gradient wind imbalance to the agradient wind rather than to the thermodynamic fields. Subsequently, we explored the effect of the agradient wind on the secondary circulation, and showed that the agradient wind strengthens the secondary circulation in its vicinity, which can be explained as a consequence of the restoring forces and mass continuity. Furthermore, we speculated that the SE equation, together with the radial velocity equation, could reproduce the primary characteristic of the axisymmetric boundary layer dynamics by prescribing the parameterization of subgrid-scale turbulent mixing. Specifically, the noU_BL and noVa_BL experiments conducted by Fei et al. in an article published in 2021 were reinterpreted, and the oscillation wavelength of the agradient wind in the eyewall was approximated based on this framework. Additionally, a new numerical solution algorithm to overcome the hyperbolicity near the boundary layer was proposed. This study attempts to develop a complete dynamic theory for tropical cyclones in both qualitative and quantitative perspectives.

Open access
Xiping Zeng
,
Zbigniew Ulanowski
,
Andrew J. Heymsfield
,
Yansen Wang
, and
Xiaowen Li

Abstract

The stability of ice crystal orientation is studied by modeling the airflow around ice crystals at moderate Reynolds number, where an ice crystal is approximated by a cylinder with three parameters: diameter D, length L, and zenith angle of the axis θ. In this paper, the torque acting on ice crystals is simulated at different θ first, and then a special θ with zero horizontal torque, denoted as θe, is sought as an equilibrium of ice crystal orientation. The equilibrium is classified into two kinds: stable and unstable. Ice crystals rotate to θe of stable equilibriums while deviating from θe of unstable ones once they are released into quiet air. Multiple equilibriums of ice crystal orientation are found via numerical simulations. A cylinder with D/L close to one has three equilibriums, two of which are stable (i.e., θe = 0° and 90°). A cylinder with D/L away from one has only two equilibriums, one of which is stable (i.e., either θe = 0° or 90°). In addition, an asymmetric cylinder has two, three, or five equilibriums, and their θe is sensitive to the distance between its geometrical center and its center of gravity. The sensitivity of θe to crystal asymmetry suggests large symmetric ice crystals tend to become asymmetric (or irregular) and subsequently oriented randomly.

Significance Statement

Ice crystal orientation impacts high-cloud reflectance and satellite-based observations of high clouds significantly. However, its laboratory and field observations look dissimilar: the percentage of horizontally oriented ice crystals (HOICs) observed in the laboratory is quite high, while in the field it is often low and varies greatly in space and time. The motivation for this study is to elucidate what causes the difference between the laboratory and field observations. The torque acting on ice crystals are computed by modeling the airflow around ice crystals, revealing the conditions for nonhorizontal orientations of ice crystals. In quiet air, an ice crystal is oriented either horizontally or vertically when its shape is close to sphere. When its shape is elongated in one direction, its orientation depends on its asymmetry in density and shape. The sensitivity of ice crystal orientation to ice crystal asymmetry explains the low percentage of HOICs in the field, because asymmetric ice crystals are common in clouds. As an application, this sensitivity together with the observed percentage of HOICs can be used to infer the processes of ice crystal growth in clouds, providing clues to better representation of ice crystals in weather and climate models.

Open access
Anna Lea Albright
,
Bjorn Stevens
,
Sandrine Bony
, and
Raphaela Vogel

Abstract

The transition layer in the trades has long been observed and simulated, but the physical processes producing its structure remain little investigated. Using extensive observations from the Elucidating the Role of Clouds–Circulation Coupling in Climate (EUREC4A) field campaign, we propose a new conceptual picture of the trade wind transition layer, occurring between the mixed-layer top (around 550 m) and subcloud-layer top (around 700 m). The theory of cloud-free convective boundary layers suggests a transition-layer structure with strong jumps at the mixed-layer top, yet such strong jumps are only observed rarely. Despite cloud-base cloud fraction measured as only 5.3% ± 3.2%, the canonical cloud-free convective boundary layer structure is infrequent and confined to large [O(200) km] cloud-free areas. We show that the majority of cloud bases form within the transition layer, instead of above it, and that the cloud-top height distribution is bimodal, with a first population of very shallow clouds (tops below 1.3 km) and a second population of deeper clouds (extending to 2–3 km depth). We then show that the life cycle of this first cloud population maintains the transition-layer structure. That is, very shallow clouds smooth vertical thermodynamic gradients in the transition layer by a condensation–evaporation mechanism, which is fully coupled to the mixed layer. Inferences from mixed-layer theory and mixing diagrams, moreover, suggest that the observed transition-layer structure does not affect the rate of entrainment mixing, but rather the properties of the air incorporated into the mixed layer, primarily to enhance its rate of moistening.

Significance Statement

The physical processes producing the structure of the trade wind transition layer, a thin atmospheric layer thought to be important for regulating convection, are not yet well understood. Using extensive observations from a recent field campaign, we find that the cloud-free convective boundary layer structure, with an abrupt discontinuity in thermodynamic variables, is infrequent, despite cloud-base cloud fraction being small. We show that very shallow clouds both forming and dissipating within the transition layer smooth vertical gradients compared to a jump, except in large [O(200) km] cloud-free areas. This condensation–evaporation mechanism, which is fully coupled to the mixed layer, does not appear to affect the rate of entrainment mixing, but rather the properties of air incorporated into the mixed layer.

Open access
Georgios A. Efstathiou

Abstract

A scale-dependent dynamic Smagorinsky model is implemented in the Met Office/NERC Cloud (MONC) model using two averaging flavors, along Lagrangian pathlines and local moving averages. The dynamic approaches were compared against the conventional Smagorinsky–Lilly scheme in simulating the diurnal cycle of shallow cumulus convection. The simulations spanned from the LES to the near-gray-zone and gray-zone resolutions and revealed the adaptability of the dynamic model across the scales and different stability regimes. The dynamic model can produce a scale- and stability-dependent profile of the subfilter turbulence length scale across the chosen resolution range. At gray-zone resolutions the adaptive length scales can better represent the early precloud boundary layer leading to temperature and moisture profiles closer to the LES compared to the standard Smagorinsky. As a result, the initialization and general representation of the cloud field in the dynamic model is in good agreement with the LES. In contrast, the standard Smagorinsky produces a less well-mixed boundary layer, which fails to ventilate moisture from the boundary layer, resulting in the delayed spinup of the cloud layer. Moreover, strong downgradient diffusion controls the turbulent transport of scalars in the cloud layer. However, the dynamic approaches rely on the resolved field to account for nonlocal transports, leading to overenergetic structures when the boundary layer is fully developed and the Lagrangian model is used. Introducing the local averaging version of the model or adopting a new Lagrangian time scale provides stronger dissipation without significantly affecting model behavior.

Open access