Browse

You are looking at 41 - 50 of 499 items for :

  • Weather, Climate, and Society x
  • Refine by Access: Content accessible to me x
Clear All
Mikhail Varentsov, Natalia Shartova, Mikhail Grischenko, and Pavel Konstantinov

Abstract

The assessment of bioclimatic conditions at the national scale remains a highly relevant task. It might be one of the main parts of the national strategy for the sustainable development of different regions under changing climatic conditions. This study evaluated the thermal comfort conditions and their changes in Russia according to gridded meteorological data from ERA-Interim reanalysis with a spatial resolution of 0.75° × 0.75° using the two most popular bioclimatic indices based on the human energy balance: physiologically equivalent temperature (PET) and universal thermal comfort index (UTCI). We analyzed the summer and winter means of these indices as well as the repeatability of different thermal stress grades for the current climatological standard normal period (1981–2010) and the trends of these parameters over the 1979–2018 period. We revealed the high diversity of the analyzed parameters in Russia as well as significant differences between the contemporary climate conditions and their changes in terms of mean temperature, mean values of bioclimatic indices, and thermal stress repeatability. Within the country, all degrees of thermal stress were possible; however, severe summer heat stress was rare, and in winter nearly the whole country experienced severe cold stress. Multidirectional changes in bioclimatic conditions were observed in Russia against the general background of climate warming. The European part of the country was most susceptible to climate change because it experiences significant changes both in summer and winter thermal stress repeatability. Intense Arctic warming was not reflected in significant changes in thermal stress repeatability.

Free access
Rachel Dryden, M. Granger Morgan, and Stephen Broomell

Abstract

An increase in the severity of extreme weather is arguably one of the most important consequences of climate change with immediate and potentially devastating impacts. Recent events, like Hurricane Harvey, stimulated public discourse surrounding the role of climate change in amplifying, or otherwise modifying, the patterns of such events. Within the scientific community, recent years have witnessed considerable progress on “climate attribution”—the use of statistical techniques to assess the probability that climate change is influencing the character of some extreme weather events. Using a novel application of signal detection theory, this article assesses when, and to what extent, laypeople attribute changes in hurricanes to climate change and whether and how certain characteristics predict this decision. The results show that people attribute hurricanes to climate change based on their preexisting climate beliefs and numeracy. Respondents who were more dubious about the existence of climate change (and more numerate) required a greater degree of evidence (i.e., a more extreme world) before they were willing to suggest that an unusual hurricane season might be influenced by climate change. However, those who have doubts were still willing to make these attributions when hurricane behavior becomes sufficiently extreme. In general, members of the public who hold different prior views about climate change are not in complete disagreement about the evidence they perceive, which leaves the possibility for future work to explore ways to bring such judgments back into alignment.

Free access
Samuel J. Childs, Russ S. Schumacher, and Stephen M. Strader

Abstract

Severe convective storms along the Front Range and eastern plains of Colorado frequently produce tornadoes and hail, leading to substantial damage and crop losses annually. Determination of future human exposure from these events must consider both changes in meteorological conditions and population dynamics. Projections of EF0 + tornadoes (on the enhanced Fujita scale) and severe [1.0+ in. (25.4+ mm)] hail reports out to the year 2100 are computed using convective parameter proxies generated from dynamically downscaled GFDL Climate Model, version 3 (GFDL CM3), output by the WRF Model for control and future climate scenarios. The proxies suggest that tornado and hail days in the region may increase by up to one tornado day and three hail days per year by 2100, with the greatest increases across northeastern Colorado. Using a spatially explicit Monte Carlo model, projected future frequency and spatial changes in tornadoes and hail are superimposed with population projections from the shared socioeconomic pathways (SSPs) to provide a range of possible scenarios for end-of-century human exposure to tornadoes and hailstorms. Changes in hazard frequency and spatial distribution may amplify human exposure up to 117% for tornadoes and 178% for hail in the region by 2100, although specific results are sensitive to uncertain combinations of future overlaps between hazard spatial distribution and population. Findings presented herein not only will provide the public, insurers, policy makers, land-use planners, and researchers with estimates of potential future tornado and hail impacts in the Front Range region, they also will allow the weather enterprise to better understand, prepare for, and communicate tornado and hail risk to eastern Colorado communities.

Free access
Tyler A. Beeton and Shannon M. McNeeley

Abstract

Although drought is a natural part of climate across the north-central United States, how drought is experienced and responded to is the result of complex biophysical and social processes. Climate change assessments indicate drought impacts will likely worsen in the future, which will further challenge decision-making. Here, a drought management decision typology is empirically developed from synthesis of three in-depth case studies using a modified grounded-theory approach. The typology highlights 1) the entity or entities involved, 2) management sectors, 3) decision types, 4) spatial and temporal scale(s) of decision-making, and 5) barriers that inhibit decision-making. Findings indicate similarities in decision types and barriers across cases. Changes in operations, practices, or behaviors; information and technology; and legal or policy changes were the most common decision types, while commonly cited barriers were institutional constraints, fragmented decision-making, and limited personnel and financial resources. Yet barriers and responses also differed within and between sectors and jurisdictions. Several barriers inhibited anticipatory, regional, and interagency drought response, such as limited institutional support, competing mandates, limited resources, lack of usable information, limits to interagency fund transfers, and historical context and distrust among entities. Findings underscore the importance of documenting nuanced decision-making in local places and broader generalizations in decision-making across scales. This contributes to the goal of developing drought science that is actionable for decision-making.

Free access
Shadya Sanders, Terri Adams, and Everette Joseph

Abstract

This paper uses the “Super Outbreak” of 2011 as a case study to examine the potential gaps between the dissemination of severe weather warnings and the public’s behavioral response to this information. This study focuses on a single tornado track that passed through Tuscaloosa, Alabama. The tornado caused massive damage and destruction and led to a total of 62 fatalities. The threat of severe storms was known days in advance, and forecasts were disseminated to the public. Questions were raised about the forecasts, warning lead times, and the perception of the warnings among residents. This paper examines the potential gaps that exist between the dissemination of tornadic warning information and citizen response. The analysis of data collected through a mixed-method approach suggests that, regardless of weather forecast accuracy, a significant chasm exists between the dissemination of warnings and the personalizing of risks, which results in limited use of protective measures in the face of severe weather threats.

Open access
Kevin D. Ash, Michael J. Egnoto, Stephen M. Strader, Walker S. Ashley, David B. Roueche, Kim E. Klockow-McClain, David Caplen, and Maurya Dickerson

Abstract

Southeastern U.S. mobile and manufactured housing (MH) residents are the most tornado-vulnerable subset of the population because of both physical and socioeconomic factors. This study builds upon prior MH resident tornado vulnerability research by statistically and geographically analyzing responses from a survey administered to these residents in the Southeast. Specifically, 257 Alabama and Mississippi MH residents were administered a survey with questions pertaining to their perceived tornado risk and vulnerability, protective action and decision-making, and beliefs about the structural integrity of their homes. Results indicate that, despite the weather and emergency management enterprises consistently suggesting that MH residents evacuate their homes for sturdier shelter during tornado events, more than 50% of MH residents believe their homes are safe sheltering locations. The prevalence of larger MHs in northern Alabama partially influences willingness to shelter within one’s MH, while higher levels of negative affectivity stemming from recent impactful tornadoes in northern Alabama influences people to evacuate their MHs for safety. Study findings also uncovered a perception and vulnerability paradox for these residents: Those who have the means to evacuate their MH often feel they have no need to do so, whereas those who recognize the potential peril of sheltering in their home and want to evacuate often lack the resources and/or self-efficacy to carry out more desirable sheltering plans. Overall, study results provide valuable information for National Weather Service forecasters, emergency managers, and media partners so that they may use it for public outreach and MH resident education.

Open access
Nadine Fleischhut, Stefan M. Herzog, and Ralph Hertwig

Abstract

As climate change unfolds, extreme weather events are on the rise worldwide. According to experts, extreme weather risks already outrank those of terrorism and migration in likelihood and impact. But how well does the public understand weather risks and forecast uncertainty and thus grasp the amplified weather risks that climate change poses for the future? In a nationally representative survey (N = 1004; Germany), we tested the public’s weather literacy and awareness of climate change using 62 factual questions. Many respondents misjudged important weather risks (e.g., they were unaware that UV radiation can be higher under patchy cloud cover than on a cloudless day) and struggled to connect weather conditions to their impacts (e.g., they overestimated the distance to a thunderstorm). Most misinterpreted a probabilistic forecast deterministically, yet they strongly underestimated the uncertainty of deterministic forecasts. Respondents with higher weather literacy obtained weather information more often and spent more time outside but were not more educated. Those better informed about climate change were only slightly more weather literate. Overall, the public does not seem well equipped to anticipate weather risks in the here and now and may thus also fail to fully grasp what climate change implies for the future. These deficits in weather literacy highlight the need for impact forecasts that translate what the weather may be into what the weather may do and for transparent communication of uncertainty to the public. Boosting weather literacy may help to improve the public’s understanding of weather and climate change risks, thereby fostering informed decisions and mitigation support.

Open access
Fiona Paumgarten, Bruno Locatelli, and Ed T. F. Witkowski

Abstract

More frequent and intense climate hazards, a predicted outcome of climate change, are likely to threaten existing livelihoods in rural communities, undermining households’ adaptive capacity. To support households’ efforts to manage and reduce this risk, there is a need to better understand the heterogeneity of risk within and between communities. The Intergovernmental Panel on Climate Change revised their climate vulnerability framework to incorporate the concept of risk. This study contributes toward the operationalization of this updated framework by applying a recognized methodology to the analysis of the climate-related risk of rural households. Using a mixed-method approach, including a cluster analysis, it determined and assessed archetypical patterns of household risk. The approach was applied to 170 households in two villages, in different agroecological zones, in the Vhembe District Municipality of South Africa’s Limpopo Province. Six archetypical climate-risk profiles were identified based on differences in the core components of risk, namely, the experience of climate hazards, the degree of exposure and vulnerability, and the associated impacts. The method’s application is illustrated by interpreting the six profiles, with possible adaptation pathways suggested for each. The archetypes show how climate-related risk varies according to households’ livelihood strategies and capital endowments. There are clear site-related distinctions between the risk profiles; however, the age of the household and the gender of the household head also differentiate the profiles. These different profiles suggest the need for adaptation responses that account for these site-related differences, while still recognizing the heterogeneity of risk at the village level.

Free access
Peter N. Peregrine

Abstract

In a recent Weather, Climate, and Society article, two hypotheses about social resilience to disaster were tested. One was that societies allowing greater political participation and access to decision-making were more resilient to catastrophic climate-related disasters; the second was that societies with stronger social norms were more resilient. Support was found for the first hypothesis but little support for the second. The lack of support for the second hypothesis seemed odd, as it had been supported by other researchers, but a clear rationale for the lack of support was not offered. Here the previous study is replicated with a sample of 20 societies that experienced the Late Antique Little Ice Age. As with the original paper, the replication finds support for the first hypothesis and little support for the second. It is suggested that the reason for these differing results is due to the differing forms of climate-related disasters examined in previous studies. Specifically, it is suggested that political participation provides resilience to catastrophic climate-related disasters by fostering bridging forms of social capital, whereas adherence to strong social norms provides resilience to smaller, more episodic disasters by fostering bonding forms of social capital. The paper concludes with policy suggestions that are based on these findings.

Free access
Jonathan Friedrich, Jannik Stahl, Gijsbert Hoogendoorn, and Jennifer M. Fitchett

Abstract

Climate change poses significant threats to the sustainability of tourism economies globally. This is particularly true for beach tourism, which is highly dependent on the mean climate, daily weather, and natural setting of a destination to attract and satisfy tourists. This case study of the South African coastline provides new insights to the applicability of the vulnerability assessment methodology of hazard–activity pairs to the global south and specifically to sub-Saharan Africa. Through this method, tourists’ climate perceptions were analyzed and related to potential future impacts of climate change, creating hazard–activity pairs. Tourists’ perceptions of climate were captured by means of a questionnaire. Downscaled CMIP5 climate projections (RCP4.5 and RCP8.5) for six weather stations close to major beach tourism destinations were used to estimate changes in precipitation and temperature. This study reveals that future projections of a mean reduction in precipitation and increasing temperature may have positive rather than negative direct effects on South African beach tourism destinations because what tourists perceive as “comfortable” weather conditions are increasing in prevalence. Nevertheless, indirect and induced effects of an already changing climate, defining further hazard–activity pairs, must be considered in vulnerability assessments. This work endorses the applicability of the hazard–activity pair methodology to South Africa and the global south at large.

Free access