Browse

You are looking at 41 - 50 of 7,166 items for :

  • Journal of Physical Oceanography x
  • Refine by Access: Content accessible to me x
Clear All
Satoshi Kimura

Abstract

The mechanism of initial and transient perturbations of symmetric instability (SI) in a hydrostatic flow with lateral shear is analyzed by applying the generalized stability analysis. It is well known that the SI’s most rapidly growing motion is along isopycnals, and the growth rates consist of growing, neutral, and decaying modes. The eigenvectors of these three modes are not orthogonal to each other, hence the initial and transient perturbations bear little resemblance to the normal mode. Our findings indicate that the emergence of normal modes occurs within a time span of 1–3 inertial periods, which we refer to as the transient state. The overall growth of perturbation energy is divided into three components: geostrophic shear production (GSP), lateral shear production (LSP), and meridional buoyancy flux (MB). During the transient state, the perturbation energy is partly driven by MB, contrary to the normal mode which has zero MB. The relative energy contribution is evaluated through the ratio to GSP. While the MB-to-GSP ratio of the initial mode is higher than that of the normal mode, the LSP-to-GSP ratio remains constant. In the absence of the fastest-growing normal mode, MB can serve as the predominant initial energy source. The precise transition in the energy regime is contingent upon the geostrophic Richardson number and Rossby number.

Significance Statement

Fronts can be unstable to instabilities, which generate disturbance growth and lead to the mixing of water masses. We wanted to understand the initial and transient development of disturbance growth leading to the well-known exponentially growing state. While the exponentially growing disturbance is dominant in the long run, the disturbance growth may not have enough time to achieve the exponentially growing state. We find that the initial disturbance growth bears little resemblance to the exponentially growing state. Capturing the complete spectrum of front evolution remains challenging, and observations have thus far been limited to short-term records. The insights learned from this study can aid in better characterizing the disturbance growth captured in these short-term records.

Open access
Takamasa Tsubouchi
,
Wilken-Jon von Appen
,
Torsten Kanzow
, and
Laura de Steur

Abstract

This study quantifies the overturning circulation in the Arctic Ocean and associated heat transport (HT) and freshwater transport (FWT) from October 2004 to May 2010 based on hydrographic and current observations. Our main data source consists of 1165 moored instrument records in the four Arctic main gateways: Davis Strait, Fram Strait, Bering Strait, and the Barents Sea Opening. We employ a box inverse model to obtain mass and salt balanced velocity fields, which are then used to quantify the overturning circulation as well as HT and FWT. Atlantic Water is transformed into two different water masses in the Arctic Ocean at a rate of 4.3 Sv (1 Sv ≡ 106 m3 s−1). Combined with 0.7 Sv of Bering Strait inflow and 0.15 Sv of surface freshwater flux, 2.2 Sv flows back to the south through Davis Strait and western Fram Strait as the upper limb of the overturning circulation, and 2.9 Sv returns southward through Fram Strait as the lower limb of the overturning. The Arctic Ocean imports heat of 180 ± 57 TW (long-term mean ± standard deviation of monthly means) with a methodological uncertainty of 20 TW and exports FW of 156 ± 91 mSv with an uncertainty of 61 mSv over the 6 years with a potential offset of ∼30 mSv. The HT and FWT have large seasonalities ranging between 110 and 260 TW (maximum in winter) and between 40 and 260 mSv (maximum in winter), respectively. The obtained overturning circulation and associated HT and FWT presented here are vital information to better understand the northern extent of the Atlantic meridional overturning circulation.

Open access
Trygve Halsne
,
Alvise Benetazzo
,
Francesco Barbariol
,
Kai Håkon Christensen
,
Ana Carrasco
, and
Øyvind Breivik

Abstract

Accurate estimates of extreme waves are central for maritime activities, and stochastic wave models are the best option available for practical applications. However, the way currents influence the statistics of space–time extremes in spectral wave models has not been properly assessed. Here we demonstrate impacts of the wave modulation caused by one of the world’s strongest open ocean tidal currents, which reaches speeds of at least 3 m s−1. For a bimodal swell and wind sea state, we find that most intense interactions occur when the wind sea opposes the tidal current, with an increase in significant wave height and spectral steepness up to 45% and 167%, respectively. The steepness modulation strengthens the second-order Stokes contribution for the normalized extreme crests, which increases between 5% and 14% during opposing wind sea and current. The normalized extreme wave heights have a strong dependence on the narrow-bandedness parameter, which is sensitive to the variance distribution in the bimodal spectrum, and we find an increase up to 12% with currents opposing the wind sea. In another case of swell opposing a tidal jet, we find the spectral steepness to exceed the increase predicted by a simplified modulation model. We find support in single-point observations that using tidal currents as forcing in wave models improves the representation of the expected maximum waves, but that action must be taken to close the gap of measurements in strong currents.

Significance Statement

The purpose of this study is to investigate how a very strong tidal current affects the surface wave field, and how it changes the stochastic extreme waves formulated for a space–time domain. Our results suggest that the expected maximum waves become more realistic when tidal currents are added as forcing in wave models. Here, the expected extremes exceed traditional model estimates, i.e., without current forcing, by more than 10%. These differences have implications for maritime operations, both in terms of planning of marine structures and for navigational purposes. However, there is a significant lack of observations in environments with such strong currents, which are needed to further verify our results.

Open access
Lloyd Reese
,
Ulf Gräwe
,
Knut Klingbeil
,
Xiangyu Li
,
Marvin Lorenz
, and
Hans Burchard

Abstract

Salt mixing enables the transport of water between the inflow and outflow layers of estuarine circulation and therefore closes the circulation by driving a diahaline exchange flow. A recently derived universal law links the salt mixing inside an estuarine volume bounded by an isohaline surface to freshwater discharge: it states that on long-term average, the area-integrated mixing across the bounding isohaline is directly proportional to the freshwater discharge entering the estuary. However, even though numerous studies predict that periods of extreme discharge will become more frequent with climate change, the direct impact of such periods on estuarine mixing and circulation has yet to be investigated. Therefore, this numerical modeling study focuses on salinity mixing and diahaline exchange flows during a low-discharge and an extreme high-discharge period. To this end, we apply a realistic numerical setup of the Elbe estuary in northern Germany, using curvilinear coordinates that follow the navigational channel. This is the first time the direct relationship between diahaline exchange flow and salt mixing as well as the spatial distribution of the diahaline exchange flow is shown in a realistic tidal setup. The spatial distribution is highly correlated with the local mixing gradient for salinity, such that inflow occurs near the bottom at the upstream end of the isohaline. Meanwhile, outflow occurs near the surface at its downstream end. Last, increased vertical stratification occurs within the estuary during the high-discharge period, while estuarine-wide mixing strongly converges to the universal law for averaging periods of the discharge event time scale.

Significance Statement

Inside estuaries, such as river mouths, terrestrial freshwater is mixed with salty ocean water. This is accompanied by an estuarine circulation with inflow of saltwater into the estuary and outflow of brackish water toward the ocean. Here, we aim to better understand how salt mixing and estuarine circulation in a tidal estuary react to periods of extreme freshwater discharge. We find that even during extremely high or low discharge, salt mixing follows the freshwater discharge on time scales as short as days, and that estuarine circulation patterns are largely explained by the local distribution of mixing. As extreme runoff events are likely to occur more often with climate change, these findings may help to understand the dynamics inside future estuaries.

Open access
Chenyue Xie
,
Huaiyu Wei
, and
Yan Wang

Abstract

Mesoscale eddy buoyancy fluxes across continental slopes profoundly modulate the boundary current dynamics and shelf–ocean exchanges but have yet to be appropriately parameterized via the Gent–McWilliams (GM) scheme in predictive ocean models. In this work, we test the prognostic performance of multiple GM variants in noneddying simulations of upwelling slope fronts that are commonly found along the subtropical continental margins. The tested GM variants range from a set of constant eddy buoyancy diffusivities to recently developed energetically constrained, bathymetry-aware diffusivities, whose implementation is augmented by an artificial neural network (ANN) serving to predict the mesoscale eddy energy based on the topographic and mean flow quantities online. In addition, an ANN is employed to parameterize the cross-slope eddy momentum flux (EMF) that maintains a barotropic flow field analogous to that in an eddy-resolving model. Our tests reveal that noneddying simulations employing the bathymetry-aware forms of the Rhines scale–based scheme and GEOMETRIC scheme can most accurately reproduce the heat contents and along-slope baroclinic transports as those in the eddy-resolving simulations. Further analyses reveal certain degrees of physical consistency in the ANN-inferred eddy energy, which tends to grow (decay) as isopycnal slopes are steepened (flattened), and in the parameterized EMF, which exhibits the correct strength of shaping the flow baroclinicity if a bathymetry-aware GM variant is jointly used. These findings provide a recipe of GM variants for use in noneddying simulations with continental slopes and highlight the potential of machine learning techniques to augment physics-based mesoscale eddy parameterization schemes.

Significance Statement

This study evaluates the predictive skill of parameterization schemes of water mass transports induced by ocean mesoscale eddies across continental slopes. Correctly parameterizing these transports in noneddying ocean models (e.g., ocean climate models) is crucial for predicting the ocean circulation and shelf–ocean exchanges. This work highlights the importance of bathymetric effects on eddy transports, as parameterization schemes that account for the influence of a sloping seafloor outperform those developed specifically for a flat-bottomed ocean. This work also highlights the efficacy of machine learning techniques to augment physics-based mesoscale eddy parameterization schemes, for instance, by estimating the mesoscale eddy energy online to realize energy-dependent parameterization schemes in noneddying simulations.

Open access
Hemantha W. Wijesekera
,
Conrad A. Luecke
,
David W. Wang
,
Ewa Jarosz
,
Sergio DeRada
,
William J. Teague
,
Kyung-Il Chang
,
Jae Hak Lee
,
Hong-Sik Min
, and
SungHyun Nam

Abstract

Small-scale processes at the southwestern boundary of the Ulleung Basin (UB) in the Japan/East Sea (JES) were examined using combined ship-based and moored observations along with model output. Model results show baroclinic semidiurnal tides are generated at the shelf break and corresponding slope connecting the Korea/Tsushima Strait with the UB and propagate into the UB with large barotropic-to-baroclinic energy conversion over the slope. Observations show high-frequency internal wave packets and indicate strong velocity shear and energetic turbulence associated with baroclinic tides in the stratified bottom layer. Solitary-like waves with frequencies from 0.2N to 0.5N (buoyancy frequency N) were found at the edge of the shelf break with supercritical flow. For subcritical flow, a hydraulic jump formed over the shelf break with weakly dispersive internal lee waves with frequencies varying from 0.5N to N. These high-frequency lee waves were trapped in the stratified bottom layer, with wave stress similar to the turbulent stress near the bottom. The power loss due to turbulent bottom drag can be an important factor for energy loss associated with the hydraulic jump. Turbulent kinetic energy dissipation rates of ∼10−4 W kg−1 were found. Large downward heat and salt fluxes below the high-salinity core mix warm/salty Tsushima Current Water with cold/low-salinity JES Intermediate Water. Mixing over the shelf break could be very important to the JES circulation since the calculated diapycnal upwelling (1–6 m day−1) at the shelf break and slope is substantially greater than the basin-averaged estimate from chemical tracers and modeling studies.

Significant Statement

The Japan/East Sea (JES) is a marginal sea, enclosed by Japan, Korea, and Russia. This study describes mixing processes over the shelf break connecting the northern Korea/Tsushima Strait (KTS) with the southern Ulleung Basin (UB), where the warm, high-salinity Kuroshio water carried by the Tsushima Current interacts with southward-flowing subsurface water masses in the JES. Our analysis suggests that the shelf break and slope between the KTS and the UB are vital areas for water-mass exchange in the southern JES. The enhanced mixing at the shelf break may impact water masses and circulation over the entire JES.

Open access
Hao-Ran Zhang
,
Yi Yu
,
Zhibin Gao
,
Yanwei Zhang
,
Wentao Ma
,
Dezhou Yang
,
Baoshu Yin
, and
Yuntao Wang

Abstract

The spatiotemporal variability of oceanic fronts in the Indonesian seas was investigated using high-resolution satellite observations. The study aimed to understand the underlying mechanism driving these fronts and their impact on chlorophyll-a variability. A high value of frontal probability was found near the coasts of major islands, exhibiting a distinct seasonal cycle with peaks occurrences during austral winter. The distribution variability of chlorophyll-a was generally consistent with the presence of active frontal zones, although a significantly positive relationship between fronts and chlorophyll-a was limited to only some specific areas, e.g., south Java Island and the Celebes Sea. Wind-driven upwelling played a major role in front generation in the Java upwelling region and enhanced frontal activity can promote the growth of phytoplankton, leading to higher chlorophyll-a. Furthermore, the study demonstrated that wind patterns preceded variations in front probability and chlorophyll-a by approximately two months. This lag suggests that the spatiotemporal variability of fronts and chlorophyll-a in this region is primarily influenced by the monsoon system. In addition, the sea surface temperature (SST) simultaneously modulated the chlorophyll-a variability. Negative SST anomalies were typically associated with positive anomalies in front probability the chlorophyll-a in most areas. Notably, the interannual variability of fronts and chlorophyll-a are prominent in the Java upwelling region. During El Niño years, this region experienced an enhanced monsoon, resulting in a negative SST anomaly alongside positive anomalies in front probability and chlorophyll-a. A comprehensive description and underlying dynamics of frontal activity in the Indonesian seas are provided by this study. The findings are helpful to delineate the variability in chlorophyll-a, thereby facilitating the future understanding of local primary production and the carbon cycle.

Significance Statement

As typical mesoscale processes, oceanic fronts have significant impacts on biological processes and fisheries in marginal seas. The complex spatiotemporal variability of fronts and their effects on biological processes in the Indonesian seas remain poorly understood. This study aimed to address this knowledge gap by investigating the seasonal and interannual variability of fronts and their influence on chlorophyll-a, a key indicator of phytoplankton biomass and primary productivity. The study identified a high frontal probability in south Java Island during austral winter and El Niño years. Wind-driven upwelling was found to be a major factor in front generation and promoting phytoplankton growth. The findings of this study will improve the theoretical knowledge of regional dynamics, local primary production, and the carbon cycle in the Indonesian seas, benefiting fisheries management and ecosystem conservation efforts.

Open access
Eric Kunze
,
Ren-Chieh Lien
,
Caitlin B. Whalen
,
James B. Girton
,
Barry Ma
, and
Maarten C. Buijsman

Abstract

Six profiling floats measured water-mass properties (T, S), horizontal velocities (u, υ), and microstructure thermal-variance dissipation rates χT in the upper ∼1 km of the Iceland and Irminger Basins in the eastern subpolar North Atlantic from June 2019 to April 2021. The floats drifted into slope boundary currents to travel counterclockwise around the basins. Pairs of velocity profiles half an inertial period apart were collected every 7–14 days. These half-inertial-period pairs are separated into subinertial eddy (sum) and inertial/semidiurnal (difference) motions. Eddy flow speeds are ∼O(0.1) m s−1 in the upper 400 m, diminishing to ∼O(0.01) m s−1 by ∼800-m depth. In late summer through early spring, near-inertial motions are energized in the surface layer and permanent pycnocline to at least 800-m depth almost simultaneously (within the 14-day temporal resolution), suggesting rapid transformation of large-horizontal-scale surface-layer inertial oscillations into near-inertial internal waves with high vertical group velocities through interactions with eddy vorticity gradients (effective β). During the same period, internal-wave vertical shear variance was 2–5 times canonical midlatitude magnitudes and dominantly clockwise-with-depth (downward energy propagation). In late spring and early summer, shear levels are comparable to canonical midlatitude values and dominantly counterclockwise-with-depth (upward energy propagation), particularly over major topographic ridges. Turbulent diapycnal diffusivities KO(10−4) m2 s−1 are an order of magnitude larger than canonical midlatitude values. Depth-averaged (10–1000 m) diffusivities exhibit factor-of-3 month-by-month variability with minima in early August.

Open access
Eiji Masunaga
,
Matthew H. Alford
,
Andrew J. Lucas
, and
Andrea Rodriguez-Marin Freudmann

Abstract

This study investigates three-dimensional semidiurnal internal tide (IT) energetics in the vicinity of La Jolla Canyon, a steep shelf submarine canyon off the Southern California coast, with the Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS) numerical simulator. Numerical simulations show vertical structure and temporal phasing consistent with detailed field observations. ITs induce large (approximately 34 m from peak to peak) isotherm displacements and net onshore IT energy flux up to 200 W m−1. Although the net IT energy flux is onshore, the steep supercritical slope around the canyon results in strong reflection. The model provides the full life span of internal tides around the canyon, including internal tide generation, propagation, and dissipation. ITs propagate into the canyon from the south and are reflected back toward offshore from the canyon’s north side. In the inner part of the canyon, elevated mixing occurs in the middle layer due to an interaction between incident mode-1 ITs and reflected higher-mode ITs. The magnitude of IT flux, generation, and dissipation on the south side of the canyon are higher than those on the north side. An interference pattern in horizontal kinetic energy and available potential energy with a scale of approximately 20–50 km arises due to low-mode wave reflections. Our results provide new insight into IT dynamics associated with a small-scale canyon topography.

Significance Statement

Internal waves play an important role in ocean circulations and ecosystems. In particular, internal waves with frequencies of tides, known as internal tides, strongly enhance energy, heat, and mass transport in coastal oceans. This study presents internal tide dynamics in La Jolla Canyon, California, using a high-resolution numerical model. Model results show energy convergence in the canyon leading to internal tide energy dissipation and mixing. Some parts of internal tide energy reflect back offshore resulting in standing internal waves off California. This study provides new insights into internal tide dynamics and energy budgets in submarine canyons.

Open access
Nicholas P. Foukal
and
Robert S. Pickart

Abstract

We present the first continuous mooring records of the West Greenland Coastal Current (WGCC), a conduit of fresh, buoyant outflow from the Arctic Ocean and the Greenland Ice Sheet. Nearly two years of temperature, salinity, and velocity data from 2018 to 2020 demonstrate that the WGCC on the southwest Greenland shelf is a well-formed current distinct from the shelfbreak jet but exhibits strong chaotic variability in its lateral position on the shelf, ranging from the coastline to the shelf break (50 km offshore). We calculate the WGCC volume and freshwater transports during the 35% of the time when the mooring array fully bracketed the current. During these periods, the WGCC remains as strong (0.83 ± 0.02 Sverdrups; 1 Sv ≡ 106 m3 s−1) as the East Greenland Coastal Current (EGCC) on the southeast Greenland shelf (0.86 ± 0.05 Sv) but is saltier than the EGCC and thus transports less liquid freshwater (30 × 10−3 Sv in the WGCC vs 42 × 10−3 Sv in the EGCC). These results indicate that a significant portion of the liquid freshwater in the EGCC is diverted from the coastal current as it rounds Cape Farewell. We interpret the dominant spatial variability of the WGCC as an adjustment to upwelling-favorable wind forcing on the West Greenland shelf and a separation from the coastal bathymetric gradient. An analysis of the winds near southern Greenland supports this interpretation, with nonlocal winds on the southeast Greenland shelf impacting the WGCC volume transport more strongly than local winds over the southwest Greenland shelf.

Open access