Browse

You are looking at 41 - 50 of 4,031 items for :

  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: Content accessible to me x
Clear All
Julia Muchowski
,
Lars Umlauf
,
Lars Arneborg
,
Peter Holtermann
,
Elizabeth Weidner
,
Christoph Humborg
, and
Christian Stranne

Abstract

Stratified oceanic turbulence is strongly intermittent in time and space, and therefore generally underresolved by currently available in situ observational approaches. A promising tool to at least partly overcome this constraint are broadband acoustic observations of turbulent microstructure that have the potential to provide mixing parameters at orders of magnitude higher resolution compared to conventional approaches. Here, we discuss the applicability, limitations, and measurement uncertainties of this approach for some prototypical turbulent flows (stratified shear layers, turbulent flow across a sill), based on a comparison of broadband acoustic observations and data from a free-falling turbulence microstructure profiler. We find that broadband acoustics are able to provide a quantitative description of turbulence energy dissipation in stratified shear layers (correlation coefficient r = 0.84) if the stratification parameters required by the method are carefully preprocessed. Essential components of our suggested preprocessing algorithm are 1) a vertical low-pass filtering of temperature and salinity profiles at a scale slightly larger than the Ozmidov length scale of turbulence and 2) an automated elimination of weakly stratified layers according to a gradient threshold criterion. We also show that in weakly stratified conditions, the acoustic approach may yield acceptable results if representative averaged vertical temperature and salinity gradients rather than local gradients are used. Our findings provide a step toward routine turbulence measurements in the upper ocean from moving vessels by combining broadband acoustics with in situ CTD profiles.

Open access
Jian Xu
,
Xing Wang
,
Ping Liu
, and
Qiaoyu Duan

Abstract

This article develops a novel event-triggered sliding mode control (ETSMC) approach with variable threshold to deal with trajectory tracking matters of autonomous underwater vehicles (AUVs) accompanied by actuator saturation and external disturbances, which can effectively reduce the communication burden between the controller and actuator. The proposed scheme will be very practical when some extreme situations occur. First, the closed-loop system is split into two parts: fixed terms determined by the system itself and nonlinear terms caused by uncertain factors. The nonlinear terms are estimated through adaptive technique. Then the apposite event-triggered mechanism, adaptive laws, and modeled actuator saturation characteristics are designed. The correctness of the presented scheme is illustrated via the stability analysis in the sequel, and the Zeno phenomenon is certificated to be excluded simultaneously. Finally, two different reference motion trajectories are adopted in the simulation experiments, which can indicate that the proposed ETSMC possesses performance superiority and only requires to consume a small amount of communication resources in trajectory tracking control of AUVs.

Significance Statement

Through the research of this article, we propose a novel event-triggered sliding mode control method with variable threshold applied to autonomous underwater vehicles (AUVs). When conducting ocean exploration work, we usually need the AUVs to follow particular trajectories. By using the proposed method, it can greatly reduce the loss of communication resources inside the system.

Restricted access
Giuseppe Zibordi
,
Davide D’Alimonte
, and
Tamito Kajiyama

Abstract

Quality control (QC) practices are a fundamental requirement for any measurement program targeting the delivery of high-quality data. In agreement with such a need, the Ocean Color component of the Aerosol Robotic Network (AERONET-OC) includes a number of QC steps ensuring the delivery of normalized water-leaving radiance L WN spectra at incremental accuracy levels identified as level 1.0, level 1.5, and level 2.0. Currently, the final QC step allowing for rising level 1.5 L WN spectra to level 2.0 implies the execution of an expert-based procedure, which is extremely time consuming and naturally undergoes subjective decisions on dubious cases. These limitations solicited the development of an automated procedure, so-called A –QC L WN , mimicking the steps supporting an expert analyst during the final QC of AERONET-OC L WN spectra. A –QC L WN applies hierarchical tests to check (i) the relative consistency of level 1.5 L WN spectra (called candidates) with respect to L WN reference spectra (called prototypes) constructed using L WN spectra formerly and independently quality controlled; (ii) the absence of any pronounced spectral feature in portions of each L WN candidate spectrum expected to exhibit a regular shape; and additionally, when applicable, (iii) the temporal consistency of the L WN candidate spectrum with respect to close-in-time spectra as a criterion to further strengthen the quality of data. A –QC L WN performance has been verified using L WN spectra from AERONET-OC measurement sites representative of various water types embracing oligotrophic/mesotrophic waters dominated by chlorophyll-a concentration and coastal waters exhibiting increasing levels of optical complexity. A –QC L WN has shown an acceptance rate of AERONET-OC level 1.5 L WN candidate spectra varying between approximately 89% and 93% with agreement in the range of 88%–93% with respect to the L WN spectra independently quality controlled through the expert-based procedure. The additional capability of A –QC L WN to rank the fully quality-controlled L WN spectra combining weights depending on the various tests, anticipates the possibility to best support applications with diverse accuracy needs. Finally, acceptance rates of A –QC L WN for L WN prototype spectra built using level 1.5 data, an alternative to fully quality-controlled level 2.0, have shown values generally increased by less than 1%. This indicates the possibility to lessen the constraint implying the existence of reference level 2.0 L WN data for the relative-consistency test at the expense of a fairly low reduction in accuracy.

Open access
Chunying Liu
,
Eric Freeman
,
Elizabeth C. Kent
,
David I. Berry
,
Steven J. Worley
,
Shawn R. Smith
,
Boyin Huang
,
Huai-min Zhang
,
Thomas Cram
,
Zaihua Ji
,
Mathieu Ouellet
,
Isabelle Gaboury
,
Frank Oliva
,
Axel Andersson
,
William E. Angel
,
Angela R. Sallis
, and
Adedoja Adeyeye

Abstract

This paper describes the new International Comprehensive Ocean–Atmosphere Data Set (ICOADS) near-real-time (NRT) release (R3.0.2), with greatly enhanced completeness over the previous version (R3.0.1). R3.0.1 had been operationally produced monthly from January 2015 onward, with input data from the World Meteorological Organization (WMO) Global Telecommunication Systems (GTS) transmissions in the Traditional Alphanumeric Codes (TAC) format. Since the release of R3.0.1, however, many observing platforms have changed, or are in the process of transitioning, to the Binary Universal Form for Representation of Meteorological Data (BUFR) format. R3.0.2 combines input data from both BUFR and TAC formats. In this paper, we describe input data sources; the BUFR decoding process for observations from drifting buoys, moored buoys, and ships; and the data quality control of the TAC and BUFR data streams. We also describe how the TAC and BUFR streams were merged to upgrade R3.0.1 into R3.0.2 with duplicates removed. Finally, we compare the number of reports and spatial coverage of essential climate variables (ECVs) between R3.0.1 and R3.0.2. ICOADS NRT R3.0.2 shows both quantitative and qualitative gains from the inclusion of BUFR reports. The number of observations in R3.0.2 increased by nearly 1 million reports per month, and the coverage of buoy and ship sea surface temperatures (SSTs) on monthly 2° × 2° grids increased by 20%. The number of reported ECVs also increased in R3.0.2. For example, observations of SST and sea level pressure (SLP) increased by around 30% and 20%, respectively, as compared to R3.0.1, and salinity is a new addition to the ICOADS NRT product in R3.0.2.

Significance Statement

The International Comprehensive Ocean–Atmosphere Data Set (ICOADS) is the largest collection of surface marine observations spanning from 1662 to the present. A new version, ICOADS near-real-time 3.0.2, includes data transmitted in the Binary Universal Form for Representation of Meteorological Data (BUFR) format, in combination with Traditional Alphanumeric Codes (TAC) data. Many of the organizations that report observations in near–real time have moved to BUFR, so this update brings ICOADS into alignment with collections and archives of these international data distributions. By including the BUFR reports, the number of observations in the upgraded version of ICOADS increased by nearly one million reports per month and spatial coverage of buoy and ship SSTs increased by 20% over the previous version.

Open access
Alejandro Cáceres-Euse
,
Anne Molcard
,
Natacha Bourg
,
Dylan Dumas
,
Charles-Antoine Guérin
, and
Giovanni Besio

Abstract

To assess the contribution of wind drag and Stokes drift on the near-surface circulation, a methodology to isolate the geostrophic surface current from high-frequency radar data is developed. The methodology performs a joint analysis utilizing wind field and in situ surface currents along with an unsupervised neuronal network. The isolation method seems robust in the light of comparisons with satellite altimeter data, presenting a similar time variability and providing more spatial detail of the currents in the coastal region. Results show that the wind-induced current is around 2.1% the wind speed and deflected from the wind direction in the range [18°, 23°], whereas classical literature suggests higher values. The wave-induced currents can represent more than 13% of the ageostrophic current component as function of the wind speed, suggesting that the Stokes drift needs to be analyzed as an independent term when studying surface sea currents in the coastal zones. The methodology and results presented here could be extended worldwide, as complementary information to improve satellite-derived surface currents in the coastal regions by including the local physical processes recorded by high-frequency radar systems. The assessment of the wave and wind-induced currents have important applications on Lagrangian transport studies.

Restricted access
Richard M. Schulte
and
Christian D. Kummerow

Abstract

Satellite-based oceanic precipitation estimates, particularly those derived from the Global Precipitation Measurement (GPM) satellite and CloudSat, suffer from significant disagreement over regions of the globe where warm rain processes are dominant. GPM estimates of average rain rate tend to be lower than CloudSat estimates, due in part to GPM being less sensitive to shallow and/or light precipitation. Using coincident observations between GPM and CloudSat, we find that the GPM_2BCMB product misses about two-thirds of total accumulated warm rain compared to the CloudSat 2C-RAIN-PROFILE product. This difference becomes much smaller when products are compared at 1000 m above the surface (mitigating surface clutter issues) and when forcing the frequency of rain from CloudSat to match the frequency from GPM (mitigating sensitivity issues). However, even then a gap of about 25% remains. Using an optimal estimation retrieval algorithm on the underlying data, we retrieve a similar result, but find that the remaining difference between the GPM and CloudSat retrieved rain rates can be almost entirely accounted for by inconsistent assumptions about the shape of the drop size distribution (DSD) that are made in the two retrievals. We conclude that DSD assumptions contribute significantly to the relative underestimation of warm rain by GPM compared to CloudSat. Because the choice of DSD model has such a large effect on retrieved rain rates, more work is needed to determine whether the DSD models assumed by either the GPM_2BCMB or 2C-RAIN-PROFILE algorithms are actually appropriate for warm rain.

Restricted access
Li Zhao
,
Tao Xie
,
William Perrie
,
Ming Ma
,
Jingsong Yang
,
Chengzu Bai
, and
Rick Danielson

Abstract

Sea surface temperature (SST) fronts are important for fisheries and marine ecology, as well as upper-ocean dynamics, weather forecasting, and climate monitoring. In this paper, we propose a new approach to detect SST fronts from RADARSAT-2 ScanSAR images, based on the correlation of SAR-derived wind speeds using the gray level cooccurrence matrix (GLCM) approach. Due to the large differences between the correlation of wind speeds for SST fronts compared to other areas, SST fronts can be detected by the threshold method. To eliminate small-scale features (or noise), the 30 km scale is used as the length threshold for the detection of the SST fronts. The proposed method is effective when wind speeds are between 3 and 13 m s−1. The overall accuracy of our method is about 93.6%, which is sufficient for operational applications.

Restricted access
Erica L. McGrath-Spangler
,
Will McCarty
,
N. C. Privé
,
Isaac Moradi
,
Bryan M. Karpowicz
, and
Joel McCorkel

Abstract

An observing system simulation experiment (OSSE) was performed to assess the impact of assimilating hyperspectral infrared (IR) radiances from geostationary orbit on numerical weather prediction, with a focus on the proposed sounder on board the Geostationary Extended Observations (GeoXO) program’s central satellite. Infrared sounders on a geostationary platform would fill several gaps left by IR sounders on polar-orbiting satellites, and the increased temporal resolution would allow the observation of weather phenomena evolution. The framework for this OSSE was the Global Modeling and Assimilation Office (GMAO) OSSE system, which includes a full suite of meteorological observations. The experiment additionally assimilated four identical IR sounders from geostationary orbit to create a “ring” of vertical profiling observations. Based on the experimentation, assimilation of the IR sounders provided a beneficial impact on the analyzed mass and wind fields, particularly in the tropics, and produced an error reduction in the initial 24–48 h of the subsequent forecasts. Specific attention was paid to the impact of the GeoXO Sounder (GXS) over the contiguous United States (CONUS) as this is a region that is well-observed and as such difficult to improve. The forecast sensitivity to observation impact (FSOI) metric, computed across all four synoptic times over the CONUS, reveals that the GXS had the largest impact on the 24-h forecast error of the assimilated hyperspectral infrared satellite radiances as measured using a moist energy error norm. Based on this analysis, the proposed GXS has the potential to improve numerical weather prediction globally and over the CONUS.

Significance Statement

The purpose of this study is to understand the impact of the proposed geostationary hyperspectral infrared sounder as part of the Geostationary Extended Observations (GeoXO) program on numerical weather prediction. The evaluation was done using a simulated environment, and showed a beneficial impact on the tropical mass and wind fields and an error reduction in the initial 24–48 h forecasts. Over the contiguous United States, the GeoXO Sounder (GXS) performed well and had the largest impact of the assimilated infrared satellite radiances on the 24 h forecast as measured by a moist energy error norm. Based on the results of this study, the proposed GXS has the potential to improve numerical weather prediction.

Open access
Viktor Gouretski
,
Lijing Cheng
, and
Tim Boyer

Abstract

Nansen bottle casts served as the main oceanographic instrumentation type for more than a century since the establishing of the technique in the late 1890s. Between the end of the 1960s and the end of the 1990s Nansen cast technique has been gradually replaced by electronic sensor profilers (CTD). Both instrumentation types are considered as the most accurate among other oceanographic instruments and are often used as the unbiased reference. We conducted a comprehensive investigation of the consistency of the temperature data from Nansen casts and CTD profilers analyzing the quasi-collocated bottle and CTD data between the 1960s and the 1990s when both instrumentation types overlap. We found that Nansen casts tend to overestimate the sample depth with reversing mercury-in-glass thermometer temperatures being on average slightly lower compared to CTD data. Respectively, depth and temperature corrections are provided. Further, we estimated the ocean heat content changes between 1955 and 1990 using (along with all other instrumentation types) corrected and uncorrected Nansen cast data. These calculations show that for the upper 2 km layer the global average warming trend for this time period increases from 0.20 ± 0.05 W m−2 for the uncorrected data to 0.28 ± 0.06 W m−2 for the corrected data at the 90% confidence level. Finally, we suggest that the Nansen bottle cast profiles be put into a separate instrumentation group within the World Ocean Database.

Restricted access
Zijin Zhang
,
Xiaolong Dong
, and
Di Zhu

Abstract

The O2-band channel configuration of existing microwave radiometers is not optimal for surface pressure retrieval, which limits the surface pressure retrieval accuracy. In this study, we present the results of theoretically what might be the optimal microwave channels for surface pressure retrieval. An improved iterative selection method is used to select the channels that contain the highest cumulative content of surface pressure information. The selected optimal channel set comprises 16 channels, among which 10 channels are centered at the 50–60 GHz oxygen absorption band and 6 channels are centered around the 118.75 GHz oxygen absorption line. Two representative spaceborne microwave radiometers are used for comparisons, the Advanced Technology Microwave Sounder (ATMS) on board the Suomi National Polar-Orbiting Partnership (SNPP) satellite and the Microwave Humidity and Temperature Sounder (MWHTS) on board the Chinese Fengyun-3C (FY-3C) satellite. The results of information content analysis show that the optimal channel set contains more surface pressure information than that of the combination of SNPP/ATMS and FY-3C/MWHTS (SNPP/ATMS+FY-3C/MWHTS) channels. A representative dataset from the ERA5 data is input into the plane-parallel Microwave Radiative Transfer model to obtain the simulated brightness temperature observations of the selected optimal channels and the SNPP/ATMS+FY-3C/MWHTS channels. Using the simulated observations, retrieval experiments are performed. Experimental results show that retrieval accuracies of the optimal channel set are 1.09 and 1.64 hPa for clear-sky and cloudy conditions, respectively. The retrieval accuracies are 0.60 and 0.65 hPa better than that of the SNPP/ATMS+FY-3C/MWHTS channels for clear-sky and cloudy conditions, respectively.

Restricted access