Browse

You are looking at 41 - 50 of 2,432 items for :

  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All
José C. Fernández-Alvarez
,
Marta Vázquez
,
Albenis Pérez-Alarcón
,
Raquel Nieto
, and
Luis Gimeno

Abstract

Moisture transport and changes in the source–sink relationship play a vital role in the atmospheric branch of the hydrological cycle. Lagrangian approaches have emerged as the dominant tool to account for estimations of moisture sources and sinks; those that use the FLEXPART model fed by ERA-Interim reanalysis are most commonly used. With the release of the higher spatial resolution ERA5, it is crucial to compare the representation of moisture sources and sinks using the FLEXPART Lagrangian model with different resolutions in the input data, as well as its version for WRF-ARW input data, the FLEXPART-WRF. In this study, we compare this model for 2014 and moisture sources for the Iberian Peninsula and moisture sinks of North Atlantic and Mediterranean. For comparison criteria, we considered FLEXPARTv9.0 outputs forced by ERA-Interim reanalysis as “control” values. It is concluded that FLEXPARTv10.3 forced with ERA5 data at various horizontal resolutions (0.5° and 1°) represents moisture source and sink zones as represented forced by ERA-Interim (1°). In addition, the version fed with the dynamic downscaling WRF-ARW outputs (∼20 km), previously forced with ERA5, also represents these patterns accurately, allowing this tool to be used in future investigations at higher resolutions and for regional domains.

Significance Statement

The FLEXPART dispersion model forced with ERA5 reanalysis data at various resolutions represents moisture source and sink zones compared to when it is forced by ERA-Interim. When the Weather Research and Forecasting Model is used to dynamically downscale ERA5, FLEXPART-WRF can also represent moisture sources and sinks, allowing this tool to be used in future investigations requiring higher resolution and regional domains and on regions with a predominance of complex orography due to its ability to represent local moisture transport.

Restricted access
Yibing Su
,
James A. Smith
, and
Gabriele Villarini

Abstract

The Lower Mississippi River has experienced a cluster of extreme floods during the past two decades. The Bonnet Carré spillway, which is located on the Mississippi River immediately upstream of New Orleans, has been operated 15 times since its completion in 1931, with 7 occurrences after 2008. In this study, we examine rainfall and atmospheric water balance components associated with Lower Mississippi River flooding in 2008, 2011, and 2015–19. We focus on multiple time scales—1, 3, 7, and 14 days—reflecting contributions from individual storm systems and the aggregate contributions from a sequence of storm systems. Atmospheric water balance variables—integrated water vapor flux (IVT) and precipitable water—are central to our assessment of the storm environment for Lower Mississippi flood events. We find anomalously large IVT corridors accompany the critical periods of heavy rainfall and are organized in southwest–northeast orientation over the Mississippi domain. Atmospheric rivers play an important role as agents of extremes in water vapor flux and rainfall. We conduct climatological analyses of IVT and precipitable water extremes across the four time scales using 40 years of North American Regional Reanalysis (NARR) fields from 1979 to 2018. We find significant increasing trends in both variables at all time scales. Increases in IVT especially cover large regions of the Mississippi domain. The findings point to increased vulnerability faced by the Mississippi flood control system in the current and future climate.

Restricted access
Mei Hou
,
Lan Cuo
,
Amirkhamza Murodov
,
Jin Ding
,
Yi Luo
,
Tie Liu
, and
Xi Chen

Abstract

Transboundary rivers are often the cause of water-related international disputes. One example is the Amu Darya River, with a catchment area of 470 000 km2, which passes through five countries and provides water resources for 89 million people. Intensified human activities and climate change in this region have altered hydrological processes and led to water-related conflicts and ecosystem degradation. Understanding streamflow composition and quantifying the change impacts on streamflow in the Amu Darya basin (ADB) are imperative to water resources management. Here, a degree-day glacier-melt scheme coupled offline with the Variable Infiltration Capacity hydrological model (VIC-glacier), forced by daily precipitation, maximum and minimum air temperature, and wind speed, is used to examine streamflow composition and changes during 1953–2019. Results show large differences in streamflow composition among the tributaries. There is a decrease in the snowmelt component (−260.8 m3 s−1) and rainfall component (−30.1 m3 s−1) at Kerki but an increase in the glacier melt component (160.0 m3 s−1) during drought years. In contrast, there is an increase in the snowmelt component (378.6 m3 s−1) and rainfall component (12.0 m3 s−1) but a decrease in the glacier melt component (−201.8 m3 s−1) during wet years. Using the VIC-glacier and climate elasticity approach, impacts of human activities and climate change on streamflow at Kerki and Kiziljar during 1956–2015 are quantified. Both methods agree and show a dominant role played by human activities in streamflow reduction, with contributions ranging 103.2%–122.1%; however, the contribution of climate change ranges from −22.1% to −3.2%.

Restricted access
Rachel T. Pinker
,
Wen Chen
,
Yingtao Ma
,
Sujay Kumar
,
Jerry Wegiel
, and
Eric Kemp

Abstract

We present a global-scale evaluation of surface shortwave (SW↓) radiative fluxes as derived with cloud amount information from the U.S. Air Force (USAF) Cloud Depiction Forecast System (CDFS) II World-Wide Merged Cloud Analysis (WWMCA) and implemented in the framework of the NASA Land Information System (LIS). Evaluation of this product is done against ground observations, a satellite-based product from the Moderate Resolution Imaging Spectroradiometer (MODIS), and several reanalysis outputs. While the LIS/USAF product tends to overestimate the SW↓ fluxes when compared to ground observations and satellite estimates, its performance is comparable or better than the following reanalysis products: ERA5, CFSR, and MERRA-2. Results are presented using all available observations over the globe and independently for several regional domains of interest. When evaluated against ground observations over the globe, the bias in the LIS/USAF product at daily time scale was about 9.34 W m−2 and the RMS was 29.20 W m−2 while over the United States the bias was about 10.65 W m−2 and the RMS was 35.31 W m−2. The sample sizes used were not uniform over the different regions, and the quality of both ground truth and the outputs of the other products may vary regionally. It is important to note that the LIS/USAF is a near-real-time (NRT) product of interest for potential users and as such fills a need that is not met by most products. Due to latency issues, the level of observational inputs in the NRT product is less than in the reanalysis data.

Significance Statement

We evaluate a current scheme to produce surface radiative fluxes in the NASA Land Information System (LIS) framework as driven with cloud amount information from the U.S. Air Force (USAF) Cloud Depiction Forecast System (CDFS) II World-Wide Merged Cloud Analysis (WWMCA). The LIS/USAF product is provided at near–real time and as such, fills a need that is not met by most products. Information used for evaluation are ground observations, MODIS satellite-based estimates, and independent outputs from several reanalysis. Since the various LIS products are used by the hydrometeorology community, this manuscript should be of interest to the users of the LIS/USAF information on surface radiative fluxes.

Restricted access
Yixuan Wang
,
Limin Duan
,
Xin Tong
,
Shuyue Shi
,
Tingxi Liu
, and
Long Ma

Abstract

Knowledge gain in the characteristics and mechanisms of drought propagation is indispensable for timely drought early warning and risk reduction over the grassland eco-region. This study focused on the Xilin River basin, which is a typical inland river basin located in the Inner Mongolia temperate steppe, China. The characteristics of meteorological and hydrological drought were assessed by applying the standardized precipitation index and standardized streamflow index. The propagation relationship between meteorological and hydrological droughts was then investigated from both static and dynamic perspectives, and the possible reasons for its temporal dynamics were discussed by considering environmental factors. Our results showed that the Xilin River basin has suffered from more serious meteorological drought than hydrological drought during the past 60 years, with a stationary evolution of meteorological drought but an overall drying trend in hydrological drought. The propagation from meteorological to hydrological droughts exhibited obvious seasonality, characterized by stronger intensity and shorter response time in the wet season. Nonstationary behaviors were identified for the temporal patterns of drought propagation time, especially showing a significant trend in April, May, and August. The dynamic changes in propagation time affected by regional forces were principally ruled by the precipitation variation positively and strongly, and they were moderately controlled by temperature, vegetation cover, and deep-layer soil moisture, with season-dependent effects. The effects of low-frequency atmospheric anomalies on drought propagation will be further investigated in future studies, which are expected to provide a better understanding of the physical mechanism of the large-scale climate forcing on local drought condition.

Significance Statement

A new research approach was proposed to assess the propagation relationship between meteorological and hydrological drought from both static and dynamic perspectives, and the possible reasons for the temporal dynamics were discussed by considering environmental factors. Focusing on an inland river basin over the Inner Mongolia typical steppe, the propagation from meteorological to hydrological droughts showed obvious seasonality. Nonstationary behaviors were identified for the temporal patterns of drought propagation time, which could be explained by the regional hydrometeorological conditions. The advanced understanding of drought propagation provides a scientific base for water resources planning and drought management within a grassland region.

Restricted access
Weston Anderson
,
Benjamin I. Cook
,
Kim Slinski
,
Kevin Schwarzwald
,
Amy McNally
, and
Chris Funk

Abstract

One of the primary sources of predictability for seasonal hydroclimate forecasts are sea surface temperatures (SSTs) in the tropical Pacific, including El Niño–Southern Oscillation. Multiyear La Niña events in particular may be both predictable at long lead times and favor drought in the bimodal rainfall regions of East Africa. However, SST patterns in the tropical Pacific and adjacent ocean basins often differ substantially between first- and second-year La Niñas, which can change how these events affect regional climate. Here, we demonstrate that multiyear La Niña events favor drought in the Horn of Africa in three consecutive seasons [October–December (OND), March–May (MAM), OND]. But they do not tend to increase the probability of a fourth season of drought owing to the sea surface temperatures and associated atmospheric teleconnections in the MAM long rains season following second-year La Niña events. First-year La Niñas tend to have both greater subsidence over the Horn of Africa, associated with warmer waters in the west Pacific that enhance the Walker circulation, and greater cross-continental moisture transport, associated with a warm tropical Atlantic, as compared to second-year La Niñas. Both the increased subsidence and enhanced cross-continental moisture transport favors drought in the Horn of Africa. Our results provide a physical understanding of the sources and limitations of predictability for using multiyear La Niña forecasts to predict drought in the Horn of Africa.

Restricted access
Jiabao Wang
,
Michael J. DeFlorio
,
Bin Guan
, and
Christopher M. Castellano

Abstract

The Madden–Julian oscillation (MJO) is a unique type of organized tropical convection varying primarily on subseasonal time scales and is recognized as an important source of subseasonal predictability for midlatitude weather phenomena. This study provides observational evidence of MJO impacts on precipitation extreme intensity, frequency, and duration over the western United States. The results suggest a robust increase in precipitation extremes, especially in frequency, relative to climatological conditions over most of the western United States when the MJO is in its western Pacific phases during the extended boreal winter (October–March). Opposite changes are observed when the MJO is located over the Indian Ocean and Maritime Continent. The above MJO influence is characterized by strong seasonality, with the increase in extreme frequency mainly found in late autumn/early winter (OND) over California and a weaker or opposite response found in late winter (JFM). Also, MJO impacts have stronger regional consistency and persist for a longer time in OND compared to JFM. The seasonality of MJO impacts largely originates from the different amplitudes and patterns of both the MJO and basic states that are weaker and located/retreated more northwestward in OND than in JFM. This leads to different responses in MJO teleconnections including moisture transport and AR activity that contribute to the different precipitation extreme changes. The strong seasonality of the relationship between the MJO and western U.S. extreme precipitation shown in this study has implications to the source of subseasonal-to-seasonal predictions, which has a potential value to stakeholders including water resource managers.

Open access
Yulong Ren
,
Ping Yue
,
Qiang Zhang
,
Jingsong Wang
,
Jinghu Yang
,
Yaling Lu
, and
Zhao Fu

Abstract

Parameterization schemes such as soil thermal conductivity (STC) have an important impact on precipitation simulation. The precipitation in the rainy season (April–September) is the main factor affecting aridification in northern China. However, it is unclear how STC affects precipitation simulation during the rainy season. In this study, comparative experiments were conducted using the regional climate model RegCM4.6 coupled with the third-generation land surface model NCAR CLM4.5 to assess the effect of the Johansen and Lu–Ren STC schemes on precipitation. The results show that the STC had a significant effect on the simulation of rainy season precipitation and its variation in northern China. The precipitation variation characteristics simulated by the Lu–Ren scheme were closer than that of the Johansen scheme to the observation. The difference in land surface temperatures (LSTs) simulated by the two STC schemes could be a major cause of the sensitivity in the simulated precipitation. When the local LST increases by 1 K, precipitation decreases by 5–30 mm in most areas of northern China. The numerical experiments revealed that the rise of LST increases the longwave radiation, reduces the surface net radiation, and causes the redistribution of sensible and latent heat flux, forming local water vapor and thermal conditions that are not conducive to precipitation. Moreover, the difference of LST significantly changes the 500-hPa large-scale circulation field, the 700-hPa vapor transportation, and its divergence. The combined action of local heat, water vapor, and large-scale circulation factors reduces the precipitation in the rainy season. On the other side, the variation of the East Asia summer monsoon (EASM) affects the soil water content. In addition, a new STC scheme was added to NCAR CLM4.5, promoting the development of this land surface model.

Open access
Jing Sun
,
Kun Yang
,
Hui Lu
,
Xu Zhou
,
Xin Li
,
Yingying Chen
,
Weidong Guo
, and
Jonathon S. Wright

Abstract

Soil organic matter (SOM) is enriched on the eastern Tibetan Plateau, but its effects on the hydrothermal state of the coupled land–atmosphere system remain unclear. This study comprehensively investigates these effects during summer from multiple perspectives based on regional climate modeling, land surface modeling, and observations. Using a regional climate model, we show that accounting for SOM effects lowers cold and wet biases in simulations of this region. SOM increases 2-m air temperature, decreases 2-m specific/relative humidity, and reduces precipitation in coupled simulations. Inclusion of SOM also warms the shallow soil while cooling the deep soil, which may help to preserve frozen soil in this region. This cooling effect is captured by both observations and offline land surface simulations, but it is overestimated in the offline simulations due to no feedback from the atmosphere compared to the coupled ones. Including SOM in coupled climate models could therefore not only imrove their representations of atmospheric energy and water cycles, but also help to simulate the past, present, and future evolution of frozen soil with increased confidence and reliability. Note that these findings are from one regional climate model and do not apply to wetlands.

Significance Statement

The eastern Tibetan Plateau is rich in soil organic matter (SOM), which increases the amount of water the soil can hold while decreasing the rate at which heat moves through it. Although SOM is expected to preserve frozen soil by insulating it from atmospheric warming, researchers have not yet tested the effects of coupled land–atmosphere interactions on this relationship. Using a regional climate model, we show that SOM typically warms and dries the near-surface air, warms the shallow soil, and cools the deep soil by modifying both soil properties and energy exchanges at the land–atmosphere interface. The results suggest that the cooling effect of SOM on deep soil is overestimated when atmospheric feedbacks are excluded.

Restricted access
Guo Yu
,
Julianne J. Miller
,
Benjamin J. Hatchett
,
Markus Berli
,
Daniel B. Wright
,
Craig McDougall
, and
Zhihua Zhu

Abstract

The Las Vegas metropolitan area in Nevada has experienced extensive urban growth since 1950 coincident with regional and local climate change. This study explores the nonstationary flood history of the Las Vegas Wash (LVW) watershed by deconstructing it into its constituent physical drivers. Observations and reanalysis products are used to examine the hydroclimatology, hydrometeorology, and hydrology of flash flooding in the watershed. Annual peak flows have increased nonlinearly over the past seven decades, with an abrupt changepoint detected in the mid-1990s, which is attributed to the implementation of flood conveyance systems rather than changes in land use. The LVW watershed exhibits two pronounced flood seasons, associated with distinct synoptic atmospheric circulations: winter floods linked to inland-penetrating atmospheric rivers and summer floods linked to the North American monsoon. El Niño–Southern Oscillation also plays a role in modulating extreme rainfall and the resultant floods because annual maximum daily rainfall totals positively correlate with El Niño, with Spearman’s correlation coefficient of 0.36 (p value < 0.05). Winter maximum daily rainfall totals have increased since 1950, whereas summer daily rainfall maxima have decreased. The trends in hydrometeorological drivers interact with urbanization to shift flood seasonality toward more frequent winter floods in the LVW watershed. A process-based understanding of the flood hydrology of the watershed also provides insights into flood frequency analysis and flood forecasting.

Open access