Browse

You are looking at 61 - 70 of 12,438 items for :

  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All
Francisco E. Spaulding-Astudillo
and
Jonathan L. Mitchell

Abstract

We investigate how climate, clouds, and convection change as the amount of water vapor in the atmosphere is varied by altering the saturation vapor pressure (SVP) by a constant in a one-dimensional climate model. We identify four effects of altering SVP on clouds in an Earthlike climate with distinct layers of low and high clouds. First, the anvils of high clouds get higher as SVP is increased (and vice versa) because they are bound by radiative constraints to occur at a lower temperature. The vapor pressure path above the cold anvils does not change in Earthlike climates. Second, low clouds get lower as SVP increases (and vice versa) because they are coupled to a convective boundary layer (CBL) that shallows primarily from an increase in the tropospheric static stability. The third and fourth effects follow from the first two, namely, that single-layer cloud states exist both in vapor-poor states with a merged cloud deck and vapor-rich states with an elevated cloud deck. We identify two cloud instability parameters that determine the transitions between single- and double-layer cloud regimes. Qualitatively, sufficiently vapor-poor states have a deep, diffusive layer that overlaps with a weaker convective layer (topping out at the tropopause) that cannot maintain low relative humidity in the midtroposphere through the drying of descending air, thus causing the cloud layers to merge. Sufficiently vapor-rich states lose their low clouds as the shallowing CBL drops below the lifting condensation level.

Free access
Biao Geng
and
Masaki Katsumata

Abstract

This study investigated the daily cycle of the wind and divergence fields observed off the southwestern coast of Sumatra during a field campaign of the Years of the Maritime Continent pilot study. An algorithm was developed to retrieve kinematic variables from the single-Doppler data collected aboard the Research Vessel Mirai from 24 November to 13 December 2015. The observed daily cycles of the wind and divergence fields consisted of diurnal, semidiurnal, and short-term variations. Diurnal wind variation was characterized by deep and three-dimensional circulation. There was an approximate phase locking of the semidiurnal variation to the diurnal variation, both in the wind and divergence fields. The short-term wind variation occurred at a time scale of ∼1–3 h, and this pattern was associated with density currents or mesoscale gravity waves. Up to 73% of the daily vertical motion variance can be attributed to the diurnal and semidiurnal vertical motion variations with comparable strengths. Concurrently, precipitation propagated offshore in phase with density currents and mesoscale gravity waves. Our results suggest that diurnal and semidiurnal wind variations dominate the daily evolution of precipitation, whereas density currents and mesoscale gravity waves control offshore propagation. Additionally, it appears that the daily precipitation cycle is modulated by multiple-time-scale wind variabilities of less than a day, which is also responsible for the development of strong nocturnal convection off the southwestern coast of Sumatra.

Significance Statement

To improve our understanding of the daily wind and divergence cycle off the southwestern coast of Sumatra, we examined wind data collected by a shipborne Doppler radar. The observed daily cycles of the wind and divergence fields consisted of diurnal and semidiurnal variations, as well as a 1–3-h variation associated with a density current or mesoscale gravity wave. Our results suggest that diurnal and semidiurnal wind variations dominate the daily evolution of precipitation, whereas density currents and mesoscale gravity waves control offshore propagation. Thus, we highlight the role of multiple-time-scale wind variabilities of less than a day in modulating the daily precipitation cycle off the southwestern coast of Sumatra.

Open access
Dian-Yi Li
and
Zhe-Min Tan

Abstract

The negative feedback between tropical cyclone (TC) intensity and sea surface temperature (SST) plays an important role in TC development. In this study, ocean–atmosphere coupled and uncoupled ensemble forecasts are conducted to investigate the dynamics of error growth and predictability of TC intensity in an ocean–atmosphere coupled system. For the TC–ocean coupled system, the TC intensity–SST negative feedback is the essential mechanism to reduce the error growth of TC intensity by two routes, and thereby improves the TC intensity predictability. For the first route (atmosphere-limited route), the TC-induced SST cooling slows the intensification rate of the TC and weakens the final TC intensity, thereby reducing the error growth of TC intensity. In this route, the TC intensity spread is limited by the magnitude of TC intensity, while SST can be regarded as an environmental forcing. For the second route (atmosphere–ocean mutually influenced route), the interaction between the TC intensity spread and SST spread is dominant. The increasing TC intensity spread could lead to an increase in SST cooling spread, and then reduce the TC intensity spread through the negative feedback. In other words, the more (less) intense TC produces stronger (weaker) SST cooling, and thereby limits (enhances) further TC intensification in an ensemble forecast. In the second route, initial ocean temperature uncertainty could suppress the TC intensity spread reduction.

Significance Statement

Tropical cyclones force the sea surface and can lead to its cooling. This cooled sea surface can then suppress tropical cyclone intensification. The purpose of this study is to better examine the influence of such an interaction between a tropical cyclone and the ocean on tropical cyclone forecasts. We explore how accurately representing the interaction can improve the capacity to forecast tropical cyclone intensity. Given that many weather forecasting centers have considered this interaction in their models, this study should help them to understand and improve their forecasts.

Free access
Anastassia M. Makarieva
and
Andrei V. Nefiodov

Abstract

Emanuel’s concept of maximum potential intensity (E-PI) estimates the maximum velocity of tropical cyclones from environmental parameters assuming thermal wind (gradient-wind and hydrostatic balances) and slantwise neutrality in the free troposphere. E-PI’s key equation relates proportionally the radial gradients of saturated moist entropy and angular momentum. Here the E-PI derivation is reconsidered to show that the thermal wind and slantwise neutrality imply zero radial gradients of saturation entropy and angular momentum at an altitude where, for a given radius, the tangential wind has a maximum. It is further shown that, while E-PI’s key equation requires that, at the point of maximum tangential wind, the air temperature must increase toward the storm center, the thermal wind equation dictates the opposite. From the analysis of the equations of motion at the altitude of maximum tangential wind in the free troposphere, it is concluded that here the airflow must be supergradient. This implies that the supergradiency factor (a measure of the gradient-wind imbalance) must change in the free troposphere as the airflow tends to restore the balance. It is shown that such a change modifies the derivative of saturation entropy over angular momentum, which cannot therefore remain constant in the free troposphere as E-PI requires. The implications of these findings for the internal coherence of E-PI, including its boundary layer closure, are discussed.

Open access
Pin-Ying Wu
and
Tetsuya Takemi

Abstract

Thermally induced thunderstorm simulations were conducted with the Weather Research and Forecasting (WRF) Model in an idealized configuration to investigate the associated error growth and predictability. We conducted identical twin experiments with different topography and background winds to assess the impacts of these factors. The results showed that mountain topography restrains error growth at the early stage of convection development. This topographic effect is sensitive to mountain geometry and background winds: it was more noticeable in cases with higher and narrower mountains and difficult to see without background wind. The topographic effect and its sensitivity resulted from the different natures of convection initiation. However, the topographic effect became less apparent when moist convection continued growing and triggered rapid error growth. The predictability of thunderstorms is then limited at the timing after the convective activity reached its maximum. A smaller initial error or starting a simulation at a later time did not break this timing of predictability limit. Mountain topography also limitedly affected the timing of the maximum convective activity and the predictability limit. In contrast, background flows changed the convection evolution and the following predictability. The predictability limit assessed by rainfall suggested other aspects of the topographic effect. The domain-scale rainfall distribution and the intense accumulated rainfall can be adequately captured in the presence of mountains.

Free access
Jie Chen
and
Daniel R. Chavas

Abstract

The impacts of a tropical cyclone after landfall depend not only on storm intensity but also on the size and structure of the wind field. Hence, a simple predictive model for the wind field after landfall has significant potential value. This work tests existing theory for wind structure and size over the ocean against idealized axisymmetric landfall experiments in which the surface beneath a mature storm is instantaneously dried and roughened individually or simultaneously. Structure theory captures the response of the low-level wind field to different types of idealized landfalls, given the intensity and size response. Storm size, modeled to follow the ratio of simulated time-dependent storm intensity to the Coriolis parameter υ m ( τ ) / f , can generally predict the transient response of the storm gale wind radii r 34kt to inland surface forcings, particularly for at least moderate surface roughening regardless of the level of drying. Given knowledge of the intensity evolution, the above results combine to yield a theoretical model that can predict the full tangential wind field response to idealized landfalls.

Significance Statement

A theoretical model that can predict the time-dependent wind field structure of landfalling tropical cyclones (TCs) with a small number of physical, observable input parameters is essential for mitigating hazards and allocating public resources. This work provides a first-order prediction of storm size and structure after landfall, which can be combined with existing intensity predictions to form a simple model describing the inland wind field evolution. Results show its potential utility for modeling idealized inland TC wind fields.

Open access
Enoch Jo
and
Sonia Lasher-Trapp

Abstract

Entrainment is a key process that can modulate the intensity of supercells, and a better understanding of its impact could help improve forecasts of thunderstorms and the precipitation they produce. In Part III of this series, the three distinct mechanisms of entrainment identified during the mature stage of idealized supercell thunderstorms in Part I (overturning “ribbons” of horizontal vorticity, “disorganized turbulent eddies,” and the “storm-relative airstream”) are examined as the absolute humidity of the environment is decreased. The existence of these mechanisms in a more realistic simulated storm environment is also established. Entrainment is calculated as fluxes of air across the storm core surface; passive fluid tracers help determine the resulting dilution of the storm updraft. Model microphysical rates are used to examine the direct impacts of entrainment on hydrometeors within the storm updraft as well as precipitation that falls to the ground. Results show that as mixed-layer humidity decreases, the “ribbons” and turbulent eddy mechanisms decrease in intensity, but their effects on precipitation production change little. With decreasing humidity in the 3–4 km AGL layer, the storm-relative airstream entrains less humid low-level air into the storm core, decreasing the vertical mass flux, and therefore the precipitation produced by the storm. When the humidity in the mid- to upper troposphere (4–20 km AGL) is decreased, precipitation is significantly reduced, but not due to the effects of the entrained air. Rather, enhanced evaporation and sublimation of falling precipitation decreases the overall precipitation efficiency of the storm.

Free access
Yu-An Chen
and
Chun-Chieh Wu

Abstract

The interaction between Typhoon Nepartak (2016) and the upper-tropospheric cold low (UTCL) is simulated to better understand the impact of UTCL on the structural and intensity change of tropical cyclones (TCs). An experiment without UTCL is also performed to highlight the quantitative impacts of UTCL. Furthermore, idealized sensitivity experiments are carried out to further investigate the specific TC–UTCL configurations leading to different interactions. It is shown that a TC interacting with the UTCL is associated with a more axisymmetric inner-core structure and an earlier rapid intensification. Three plausible mechanisms related to the causality between a UTCL and the intensity change of TC are addressed. First, the lower energy expenditure on outflow expansion leads to higher net heat energy and intensification rate. Second, the external eddy forcing reinforces the secondary circulation and promotes further TC development. Ultimately, the shear-induced downward and radial ventilation of the low-entropy air is unexpectedly reduced despite the presence of UTCL, leading to stronger inner-core convections in the upshear quadrants. In general, the TC–UTCL interaction process of Nepartak is favorable for TC intensification owing to the additional positive effect and the reduced negative effect. In addition, results from sensitivity experiments indicate that the most favorable interaction would occur when the UTCL is located to the north or northwest of the TC at a stable and proper distance of about one Rossby radius of deformation of the UTCL.

Free access
Robert S. Schrom
,
S. Joseph Munchak
, and
Ian S. Adams

Abstract

The scattering properties of aggregates are studied herein. Early aggregates (<7 monomers) of branched planar crystals and mature aggregates (up to 100 monomers) of columns are randomly generated with varying assumptions about the monomer attachment processes and the orientation behavior during collection. The resulting physical properties of the aggregates correspond well with prior in situ and retrieved sizes and shapes. Assumed azimuthally uniform orientations during collection and monomer pivoting upon attachment resulted in flatter and denser aggregates. The column aggregates had lower density and more spherical shapes than the branched planar crystal aggregates. The scattering properties were calculated using the discrete dipole approximation for a set of orientation angles and transformed to spectral coefficients representing modes of orientation angle variability. The zeroth- and second-order coefficients dominate this variability, with the zeroth-order coefficients representing the scattering properties for randomly oriented particles. The second-order coefficients for backscatter showed differences between horizontal and vertical polarization increasing with density, and these coefficients for specific differential phase increase with both mass and density. Similarly, coefficients for the copolar covariance decreased with density. Rapid changes in the contributions to the radar moments from the second-order coefficients from low to moderate density were observed, likely due to the increasing presence of horizontally aligned monomers in the aggregate structure. Differences in how differential reflectivity and correlation coefficient evolve with the orientation distribution parameters suggest that these measurements, along with specific differential phase and reflectivity, provide complementary information about aggregate sizes, shapes, and orientation distributions.

Open access
Yanmichel A. Morfa
and
Claudia C. Stephan

Abstract

Several studies have reported vertical kinetic energy spectra almost white in horizontal wavenumber space with evidence of two maxima at synoptic scales and mesoscales, leaving the explanation of these maxima open. Processes known to influence the shape of the horizontal kinetic energy spectra include the superposition of quasi-linear inertia–gravity waves (IGWs), quasigeostrophic turbulence, and moist convection. In contrast, vertical kinetic energy has been discussed much less, as measuring vertical velocity remains challenging. This study compares the horizontal and vertical kinetic energy spectra and their relationships in global storm-resolving simulations from the DYAMOND experiment. The consistency of these relationships with linear IGW theory is tested by diagnosing horizontal wind fluctuations associated with IGW modes. Furthermore, it is shown that hydrostatic IGW polarization relations provide a quantitative prediction of the spectral slopes of vertical kinetic energy at large scales and mesoscales, where the intrinsic frequencies are inferred from the linearized vorticity equation. Our results suggest that IGW modes dominate the vertical kinetic energy spectra at most horizontal scales, whereas an incompressible, isotropic scaling of the continuity equation captures the relationship between horizontal and vertical kinetic energy spectra at small scales.

Free access