Browse
Abstract
As a major component of Earth’s energy budget, ocean heat content (OHC) plays a vital role in buffering climate change. The annual cycle is the most prominent change in OHC but has always been removed to study variations and changes in Earth’s energy budget. Here, we investigate the annual cycle of the upper-2000-m OHC at regional to global scales and assess the robustness of the signals using the spread of multiple observational products. The potential drivers are also investigated by comparing the annual OHC signal with the corresponding change in top-of-atmosphere radiation, surface heat flux, ocean heat divergence, and meridional heat transport. Results show that the robust signal of annual OHC change is significant down to a 1000-m depth globally and can reach down to 1500 m in some areas such as the tropical ocean. The global OHC (0–1500 m) changes from positive anomalies within September–February to negative anomalies within March–August, mainly because of the larger ocean area in the Southern Hemisphere and the seasonal migration of solar irradiance. Owing to the huge ocean heat capacity, the annual cycle of OHC dominates that of the global energy budget. The difference among the OHC annual cycles in the three major ocean basins is mainly attributed to ocean heat transport, especially in the tropics. In the upper 1500 m at mid- and high latitudes and in the upper 50 m of the tropics, the net sea surface heat flux dominates the OHC annual cycle, while in the tropics below 50 m, wind-driven Ekman heat transport associated with the geostrophic flow is the main driver.
Abstract
As a major component of Earth’s energy budget, ocean heat content (OHC) plays a vital role in buffering climate change. The annual cycle is the most prominent change in OHC but has always been removed to study variations and changes in Earth’s energy budget. Here, we investigate the annual cycle of the upper-2000-m OHC at regional to global scales and assess the robustness of the signals using the spread of multiple observational products. The potential drivers are also investigated by comparing the annual OHC signal with the corresponding change in top-of-atmosphere radiation, surface heat flux, ocean heat divergence, and meridional heat transport. Results show that the robust signal of annual OHC change is significant down to a 1000-m depth globally and can reach down to 1500 m in some areas such as the tropical ocean. The global OHC (0–1500 m) changes from positive anomalies within September–February to negative anomalies within March–August, mainly because of the larger ocean area in the Southern Hemisphere and the seasonal migration of solar irradiance. Owing to the huge ocean heat capacity, the annual cycle of OHC dominates that of the global energy budget. The difference among the OHC annual cycles in the three major ocean basins is mainly attributed to ocean heat transport, especially in the tropics. In the upper 1500 m at mid- and high latitudes and in the upper 50 m of the tropics, the net sea surface heat flux dominates the OHC annual cycle, while in the tropics below 50 m, wind-driven Ekman heat transport associated with the geostrophic flow is the main driver.
Abstract
The Southern Annular Mode (SAM) describes the annular or zonal component of the large-scale atmospheric circulation in the Southern Hemisphere (SH) extratropics and influences surface climate across the SH. Although this annular flow is dominant in austral summer, in other seasons considerable zonal asymmetries are evident, reflecting a zonal wave 3 (ZW3) pattern. We define an index representing asymmetric flow using the first two leading modes of meridional wind variability in the SH. Two orthogonal ZW3 indices are used together to capture longitudinal shifts in the wave train and their connection to tropical convection. We compare the impacts of the SAM and ZW3 on surface climate by examining composites of temperature and precipitation fields during each season. Impacts on mean and extreme surface climates are assessed. We find that the SAM and ZW3 are not clearly separated modes, but rather, ZW3 modulates the impact of the SAM across the midlatitudes. The SAM influence on regional temperature and precipitation is similar for both mean impacts and extremes. The ZW3 influence on extremes is more varied across indices and does not always reflect the ZW3 impact on mean fields. Notably, amplified ZW3 activity has a significant influence on the number of midlatitude fronts and frontal rainfall, highlighting the importance of considering ZW3 when exploring the surface climate impacts of large-scale SH circulation states, particularly for nonsummer seasons.
Significance Statement
Variations in the strength and position of the midlatitude westerly winds have a strong influence on surface climates. While these winds are predominantly zonally symmetric in the Southern Hemisphere, few studies to date have explored the role of the asymmetric component of this circulation, particularly for seasons outside of summer. By defining two new indices of meridional circulation, this study reveals new important impacts on temperature, rainfall, and the likelihood of extreme climates in regions of southern Australia and South America, and sea ice regions around Antarctica. These findings question the validity of considering only zonal-mean winds for climate studies of the Southern Hemisphere and have important implications for the seasonal forecasting and predictability of extreme climate events in the near future.
Abstract
The Southern Annular Mode (SAM) describes the annular or zonal component of the large-scale atmospheric circulation in the Southern Hemisphere (SH) extratropics and influences surface climate across the SH. Although this annular flow is dominant in austral summer, in other seasons considerable zonal asymmetries are evident, reflecting a zonal wave 3 (ZW3) pattern. We define an index representing asymmetric flow using the first two leading modes of meridional wind variability in the SH. Two orthogonal ZW3 indices are used together to capture longitudinal shifts in the wave train and their connection to tropical convection. We compare the impacts of the SAM and ZW3 on surface climate by examining composites of temperature and precipitation fields during each season. Impacts on mean and extreme surface climates are assessed. We find that the SAM and ZW3 are not clearly separated modes, but rather, ZW3 modulates the impact of the SAM across the midlatitudes. The SAM influence on regional temperature and precipitation is similar for both mean impacts and extremes. The ZW3 influence on extremes is more varied across indices and does not always reflect the ZW3 impact on mean fields. Notably, amplified ZW3 activity has a significant influence on the number of midlatitude fronts and frontal rainfall, highlighting the importance of considering ZW3 when exploring the surface climate impacts of large-scale SH circulation states, particularly for nonsummer seasons.
Significance Statement
Variations in the strength and position of the midlatitude westerly winds have a strong influence on surface climates. While these winds are predominantly zonally symmetric in the Southern Hemisphere, few studies to date have explored the role of the asymmetric component of this circulation, particularly for seasons outside of summer. By defining two new indices of meridional circulation, this study reveals new important impacts on temperature, rainfall, and the likelihood of extreme climates in regions of southern Australia and South America, and sea ice regions around Antarctica. These findings question the validity of considering only zonal-mean winds for climate studies of the Southern Hemisphere and have important implications for the seasonal forecasting and predictability of extreme climate events in the near future.
Abstract
The extreme precipitation (EP) in the early and late rainy seasons in Southern China is investigated from the perspective of moist static energy (MSE). At the synoptic time scale, the EP is accompanied by the charge–discharge paradigm of the vertically integrated MSE (〈MSE〉); the positive 〈MSE〉 anomaly reaches the peak one day before EP and decreases quickly during the event. The charge–discharge paradigm of 〈MSE〉 is dominated by the horizontal and vertical advection, respectively. However, synoptic systems responsible for the 〈MSE〉 charge in the early and late rainy seasons are different due to the different horizontal distributions of climatological MSE in the lower troposphere caused by the northward migration of solar radiation and the monsoon system. At the interannual time scale, more EP in the early (late) rainy season is associated with the higher seasonal-mean 〈MSE〉 that can be caused by the anomalous anticyclone (cyclone) in the western North Pacific induced by the SST anomalies in the tropical Indian Ocean and central North Pacific (the tropical Pacific). The multimodel ensemble mean of CMIP6 models reproduces well the observed 〈MSE〉–EP relationship in both the historical and Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) runs. Moreover, the mean state of 〈MSE〉 increases in the SSP5–8.5 compared to historical runs along with more frequent occurrence of EP events. Hence, 〈MSE〉 can serve as a useful metric for studying EP in Southern China at various time scales.
Abstract
The extreme precipitation (EP) in the early and late rainy seasons in Southern China is investigated from the perspective of moist static energy (MSE). At the synoptic time scale, the EP is accompanied by the charge–discharge paradigm of the vertically integrated MSE (〈MSE〉); the positive 〈MSE〉 anomaly reaches the peak one day before EP and decreases quickly during the event. The charge–discharge paradigm of 〈MSE〉 is dominated by the horizontal and vertical advection, respectively. However, synoptic systems responsible for the 〈MSE〉 charge in the early and late rainy seasons are different due to the different horizontal distributions of climatological MSE in the lower troposphere caused by the northward migration of solar radiation and the monsoon system. At the interannual time scale, more EP in the early (late) rainy season is associated with the higher seasonal-mean 〈MSE〉 that can be caused by the anomalous anticyclone (cyclone) in the western North Pacific induced by the SST anomalies in the tropical Indian Ocean and central North Pacific (the tropical Pacific). The multimodel ensemble mean of CMIP6 models reproduces well the observed 〈MSE〉–EP relationship in both the historical and Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) runs. Moreover, the mean state of 〈MSE〉 increases in the SSP5–8.5 compared to historical runs along with more frequent occurrence of EP events. Hence, 〈MSE〉 can serve as a useful metric for studying EP in Southern China at various time scales.
Abstract
Using a large ensemble of simulations from the Polar Amplification Model Intercomparison Project (PAMIP) and phase 6 of the Coupled Model Intercomparison Project (CMIP6), we compare the response of winter-mean precipitation and daily extremes across the Northern Hemisphere to future Arctic sea ice loss and global ocean warming. The North Atlantic is simulated to become drier in response to future Arctic sea ice loss, with reduced precipitation intensity and more dry days. A wetting response to sea ice loss is simulated over the midlatitude Atlantic Ocean. These responses are robust across the eight models analyzed, albeit with differences in their magnitude and spatial pattern. The precipitation response to global ocean warming is broadly opposite in sign, but larger in magnitude, compared to the response to sea ice loss, over these regions. The precipitation responses to both sea ice loss and ocean warming are strongly related to coincident changes in storm density and intensity. More specifically, there is an equatorward shift of the North Atlantic storm track in response to sea ice loss, and a northeastern extension of the North Atlantic storm track and a weakening of the Mediterranean storm track in response to ocean warming. The linear combination of the responses of future Arctic sea ice loss and global ocean warming explain well the spatial pattern of the precipitation change at 2°C global warming projected in CMIP6. Our results suggest that the projected future precipitation change over the North Atlantic reflects a “tug of war” between Arctic sea ice loss and global ocean warming, but the latter dominates over the former.
Abstract
Using a large ensemble of simulations from the Polar Amplification Model Intercomparison Project (PAMIP) and phase 6 of the Coupled Model Intercomparison Project (CMIP6), we compare the response of winter-mean precipitation and daily extremes across the Northern Hemisphere to future Arctic sea ice loss and global ocean warming. The North Atlantic is simulated to become drier in response to future Arctic sea ice loss, with reduced precipitation intensity and more dry days. A wetting response to sea ice loss is simulated over the midlatitude Atlantic Ocean. These responses are robust across the eight models analyzed, albeit with differences in their magnitude and spatial pattern. The precipitation response to global ocean warming is broadly opposite in sign, but larger in magnitude, compared to the response to sea ice loss, over these regions. The precipitation responses to both sea ice loss and ocean warming are strongly related to coincident changes in storm density and intensity. More specifically, there is an equatorward shift of the North Atlantic storm track in response to sea ice loss, and a northeastern extension of the North Atlantic storm track and a weakening of the Mediterranean storm track in response to ocean warming. The linear combination of the responses of future Arctic sea ice loss and global ocean warming explain well the spatial pattern of the precipitation change at 2°C global warming projected in CMIP6. Our results suggest that the projected future precipitation change over the North Atlantic reflects a “tug of war” between Arctic sea ice loss and global ocean warming, but the latter dominates over the former.
Abstract
The spring land surface temperature (LST) over western Eurasia, which is critical for ensuring food security, shows a clear interannual variability. Based on reanalysis data and numerical simulations, we investigated the potential influencing factors and the related mechanisms of spring LST variability in mid-to-high latitudes of western Eurasia (MHWEA). The results show that the North Atlantic tripole sea surface temperature anomalies (SSTAs) in February, which persist into spring, can significantly affect the spring LST variability over MHWEA. Analyses indicate that the positive phase of the North Atlantic tripole SSTAs pattern tends to increase the meridional SST gradient between positive SSTAs over the midlatitude North Atlantic and negative SSTAs over the south of Greenland, which strengthens the low-level atmospheric baroclinicity and thus induces more active transient eddy activities. Correspondingly, a Rossby wave train triggered by the eddy-mediated processes originates from the North Atlantic and propagates downstream, thereby causing anomalous anticyclonic circulation over MHWEA. Meanwhile, the westerly anomalies over the subpolar North Atlantic accelerate the polar front jet and provide a favorable thermodynamical condition for the tropospheric warming over the Barents–Kara Seas by bringing warm and moist oceanic air. The polar warming tends to weaken the poleward temperature gradient at mid-to-high latitudes and then decelerate the Eurasian midlatitude westerlies, thus dynamically contributing to the circulation changes that can affect spring LST over MHWEA. Model results suggest that the link can be generally reproduced. Therefore, the late-winter North Atlantic tripole SSTAs may act as a precursor for the prediction of spring LST over western Eurasia.
Significance Statement
The purpose of this study is to better understand the mechanisms underlying the interannual variability of the spring land surface temperature over western Eurasia, which is of great significance in ensuring food security. Here we show that the positive phase of the North Atlantic tripole sea surface temperature anomalies in February can modulate the tropospheric warming over the Barents–Kara Seas and further decelerate the Eurasian midlatitude westerlies in spring, which benefits local surface warming over western Eurasia. Our results provide a precursor for forecasting spring land surface temperature over western Eurasia.
Abstract
The spring land surface temperature (LST) over western Eurasia, which is critical for ensuring food security, shows a clear interannual variability. Based on reanalysis data and numerical simulations, we investigated the potential influencing factors and the related mechanisms of spring LST variability in mid-to-high latitudes of western Eurasia (MHWEA). The results show that the North Atlantic tripole sea surface temperature anomalies (SSTAs) in February, which persist into spring, can significantly affect the spring LST variability over MHWEA. Analyses indicate that the positive phase of the North Atlantic tripole SSTAs pattern tends to increase the meridional SST gradient between positive SSTAs over the midlatitude North Atlantic and negative SSTAs over the south of Greenland, which strengthens the low-level atmospheric baroclinicity and thus induces more active transient eddy activities. Correspondingly, a Rossby wave train triggered by the eddy-mediated processes originates from the North Atlantic and propagates downstream, thereby causing anomalous anticyclonic circulation over MHWEA. Meanwhile, the westerly anomalies over the subpolar North Atlantic accelerate the polar front jet and provide a favorable thermodynamical condition for the tropospheric warming over the Barents–Kara Seas by bringing warm and moist oceanic air. The polar warming tends to weaken the poleward temperature gradient at mid-to-high latitudes and then decelerate the Eurasian midlatitude westerlies, thus dynamically contributing to the circulation changes that can affect spring LST over MHWEA. Model results suggest that the link can be generally reproduced. Therefore, the late-winter North Atlantic tripole SSTAs may act as a precursor for the prediction of spring LST over western Eurasia.
Significance Statement
The purpose of this study is to better understand the mechanisms underlying the interannual variability of the spring land surface temperature over western Eurasia, which is of great significance in ensuring food security. Here we show that the positive phase of the North Atlantic tripole sea surface temperature anomalies in February can modulate the tropospheric warming over the Barents–Kara Seas and further decelerate the Eurasian midlatitude westerlies in spring, which benefits local surface warming over western Eurasia. Our results provide a precursor for forecasting spring land surface temperature over western Eurasia.
Abstract
Snow cover (SC) is an important contributor to atmospheric predictability on subseasonal to seasonal time scales. This paper evaluates the submonthly scale cause-and-effect relationship between SC and surface air temperature (SAT) in Eurasia, which has been typically overlooked in previous statistical analyses of subseasonal to seasonal atmospheric predictability. We focus on the November east–west dipolar SC pattern, a dominant large-scale SC phenomenon. We use an information flow analysis, based on information theory, to infer causal relations not revealed by conventional correlation analysis. This analysis indicates a one-way causality from SAT to SC around the west pole (Europe) in boreal autumn (November), implying that SC has little influence on the time evolution of SAT. In contrast, causality from SC to SAT is significant around the east pole (the Mongolian Plateau). An atmospheric model experiment suggests that the SAT response to SC can persist for a month via snow–albedo feedback, although the response of the upper atmosphere in the model is small. Furthermore, the subseasonal hindcasts show that the contribution of SC may affect the predictability of SAT for up to four weeks around the east pole. We suggest that the geographical and climatological atmospheric conditions are favorable for generating a positive albedo feedback as a “hotspot” of SC–SAT coupling around the east pole in autumn. The agreement of our causality analysis with other analytical and modeling approaches underscores the cause-and-effect relationship between SC and SAT and its contribution to the subseasonal predictability over autumnal Eurasia.
Abstract
Snow cover (SC) is an important contributor to atmospheric predictability on subseasonal to seasonal time scales. This paper evaluates the submonthly scale cause-and-effect relationship between SC and surface air temperature (SAT) in Eurasia, which has been typically overlooked in previous statistical analyses of subseasonal to seasonal atmospheric predictability. We focus on the November east–west dipolar SC pattern, a dominant large-scale SC phenomenon. We use an information flow analysis, based on information theory, to infer causal relations not revealed by conventional correlation analysis. This analysis indicates a one-way causality from SAT to SC around the west pole (Europe) in boreal autumn (November), implying that SC has little influence on the time evolution of SAT. In contrast, causality from SC to SAT is significant around the east pole (the Mongolian Plateau). An atmospheric model experiment suggests that the SAT response to SC can persist for a month via snow–albedo feedback, although the response of the upper atmosphere in the model is small. Furthermore, the subseasonal hindcasts show that the contribution of SC may affect the predictability of SAT for up to four weeks around the east pole. We suggest that the geographical and climatological atmospheric conditions are favorable for generating a positive albedo feedback as a “hotspot” of SC–SAT coupling around the east pole in autumn. The agreement of our causality analysis with other analytical and modeling approaches underscores the cause-and-effect relationship between SC and SAT and its contribution to the subseasonal predictability over autumnal Eurasia.
Abstract
The Arctic sea ice decline and associated change in maritime accessibility have created a pressing need for sea ice thickness (SIT) predictions. This study developed a linear Markov model for the seasonal prediction of model-assimilated SIT. It tested the performance of physically relevant predictors by a series of sensitivity tests. As measured by the anomaly correlation coefficient (ACC) and root-mean-square error (RMSE), the SIT prediction skill was evaluated in different Arctic regions and across all seasons. The results show that SIT prediction has better skill in the cold season than in the warm season. The model performs best in the Arctic basin up to 12 months in advance with ACCs of 0.7–0.8. Linear trend contributions to model skill increase with lead months. Although monthly SIT trends contribute largely to the model skill, the model remains skillful up to 2-month leads with ACCs of 0.6 for detrended SIT predictions in many Arctic regions. In addition, the Markov model’s skill generally outperforms an anomaly persistence forecast even after all trends were removed. It also shows that, apart from SIT itself, upper-ocean heat content (OHC) generally contributes more to SIT prediction skill than other variables. Sea ice concentration (SIC) is a relatively less sensitive predictor for SIT prediction skill than OHC. Moreover, the Markov model can capture the melt-to-growth season reemergence of SIT predictability and does not show a spring predictability barrier, which has previously been observed in regional dynamical model forecasts of September sea ice area, suggesting that the Markov model is an effective tool for SIT seasonal predictions.
Abstract
The Arctic sea ice decline and associated change in maritime accessibility have created a pressing need for sea ice thickness (SIT) predictions. This study developed a linear Markov model for the seasonal prediction of model-assimilated SIT. It tested the performance of physically relevant predictors by a series of sensitivity tests. As measured by the anomaly correlation coefficient (ACC) and root-mean-square error (RMSE), the SIT prediction skill was evaluated in different Arctic regions and across all seasons. The results show that SIT prediction has better skill in the cold season than in the warm season. The model performs best in the Arctic basin up to 12 months in advance with ACCs of 0.7–0.8. Linear trend contributions to model skill increase with lead months. Although monthly SIT trends contribute largely to the model skill, the model remains skillful up to 2-month leads with ACCs of 0.6 for detrended SIT predictions in many Arctic regions. In addition, the Markov model’s skill generally outperforms an anomaly persistence forecast even after all trends were removed. It also shows that, apart from SIT itself, upper-ocean heat content (OHC) generally contributes more to SIT prediction skill than other variables. Sea ice concentration (SIC) is a relatively less sensitive predictor for SIT prediction skill than OHC. Moreover, the Markov model can capture the melt-to-growth season reemergence of SIT predictability and does not show a spring predictability barrier, which has previously been observed in regional dynamical model forecasts of September sea ice area, suggesting that the Markov model is an effective tool for SIT seasonal predictions.
Abstract
The North Pacific storm-track activity is suppressed substantially under the excessively strong westerlies to form a distinct minimum in midwinter, which seems inconsistent with linear baroclinic instability theory. This “midwinter minimum” of the storm-track activity has been intensively investigated for decades as a test case for storm-track dynamics. However, the mechanisms controlling it are yet to be fully unveiled and are still under debate. Here we investigate the detailed seasonal evolution of the climatological density of surface migratory anticyclones over the North Pacific, in comparison with its counterpart for cyclones, based on a Lagrangian tracking algorithm. We demonstrate that the frequency of surface cyclones over the North Pacific maximizes in midwinter, whereas that of anticyclones exhibits a distinct midwinter minimum under the upstream influence, especially from the Japan Sea region. In midwinter, it is only on such a rare occasion that prominent weakening of the East Asian winter monsoon allows a migratory surface anticyclone to form over the Japan Sea, despite the unfavorable climatological-mean conditions due to persistent monsoonal cold-air outbreaks and the excessively strong upper-tropospheric westerlies. The midwinter minimum of the North Pacific anticyclone density suggests that anticyclones are likely the key to understanding the midwinter minimum of the North Pacific storm-track activity as measured by Eulerian eddy statistics.
Abstract
The North Pacific storm-track activity is suppressed substantially under the excessively strong westerlies to form a distinct minimum in midwinter, which seems inconsistent with linear baroclinic instability theory. This “midwinter minimum” of the storm-track activity has been intensively investigated for decades as a test case for storm-track dynamics. However, the mechanisms controlling it are yet to be fully unveiled and are still under debate. Here we investigate the detailed seasonal evolution of the climatological density of surface migratory anticyclones over the North Pacific, in comparison with its counterpart for cyclones, based on a Lagrangian tracking algorithm. We demonstrate that the frequency of surface cyclones over the North Pacific maximizes in midwinter, whereas that of anticyclones exhibits a distinct midwinter minimum under the upstream influence, especially from the Japan Sea region. In midwinter, it is only on such a rare occasion that prominent weakening of the East Asian winter monsoon allows a migratory surface anticyclone to form over the Japan Sea, despite the unfavorable climatological-mean conditions due to persistent monsoonal cold-air outbreaks and the excessively strong upper-tropospheric westerlies. The midwinter minimum of the North Pacific anticyclone density suggests that anticyclones are likely the key to understanding the midwinter minimum of the North Pacific storm-track activity as measured by Eulerian eddy statistics.
Abstract
Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitation δ 18O (δ 18O p ) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation and δ 18O p show a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon.
Significance Statement
We want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ 18O p and monsoon intensity change. We highlight a heterogeneous dipole response in precipitation and δ 18O p on millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future.
Abstract
Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitation δ 18O (δ 18O p ) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation and δ 18O p show a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon.
Significance Statement
We want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ 18O p and monsoon intensity change. We highlight a heterogeneous dipole response in precipitation and δ 18O p on millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future.
Abstract
Understanding the hydroclimate representations of precipitation δ 18O (δ 18O p ) in tropical South America (TSA) is crucial for climate reconstruction from available speleothem caves. Our preceding study (Part I) highlights a heterogeneous response in millennial hydroclimate over the TSA during the last deglaciation (20–11 ka before present), characterized by a northwest–southeast (NW–SE) dipole in both rainfall and δ 18O p , with opposite signs between central-western Amazon and eastern Brazil. Mechanisms of such δ 18O p dipole response are further investigated in this study with the aid of moisture tagging simulations. In response to increased meltwater discharge, the intertropical convergence zone (ITCZ) migrates southward, causing a moisture source location shift and depleting the isotopic value of the vapor transported into eastern Brazil, which almost entirely contributes to the δ 18O p depletion in eastern Brazil (SE pole). In contrast, the moisture source location change and local condensation change (due to the lowering convergence level and increased rain reevaporation in unsaturated subcloud layers) contribute nearly equally to the δ 18O p enrichment in the central-western Amazon (NW pole). Therefore, although a clear inverse relationship between δ 18O p and rainfall in both dipole regions seems to support the “amount effect,” we argue that the local rainfall amount only partially interprets the millennial δ 18O p change in the central-western Amazon, while δ 18O p does not document local rainfall change in eastern Brazil. Thus, the paleoclimate community should be cautious when using δ 18O p as a proxy for past local precipitation in the TSA region. Finally, we discuss the discrepancy between the model and speleothem proxies on capturing the millennial δ 18O p dipole response and pose a challenge in reconciling the discrepancy.
Significance Statement
We want to comprehensively understand the hydroclimate footprints of δ 18O p and the mechanisms of the millennial variability of δ 18O p over tropical South America with the help of water tagging experiments performed by the isotope-enabled Community Earth System Model (iCESM). We argue that the millennial δ 18O p change in eastern Brazil mainly documents the moisture source location change associated with ITCZ migration and the change of the isotopic value of the incoming water vapor, instead of the local rainfall amount. In contrast, the central-western Amazon partially documents the moisture source location shift and local precipitation change. Our study cautions that one should not simply resort to the isotopic “amount effect” to reconstruct past precipitation in tropical regions without studying the mechanisms behind it.
Abstract
Understanding the hydroclimate representations of precipitation δ 18O (δ 18O p ) in tropical South America (TSA) is crucial for climate reconstruction from available speleothem caves. Our preceding study (Part I) highlights a heterogeneous response in millennial hydroclimate over the TSA during the last deglaciation (20–11 ka before present), characterized by a northwest–southeast (NW–SE) dipole in both rainfall and δ 18O p , with opposite signs between central-western Amazon and eastern Brazil. Mechanisms of such δ 18O p dipole response are further investigated in this study with the aid of moisture tagging simulations. In response to increased meltwater discharge, the intertropical convergence zone (ITCZ) migrates southward, causing a moisture source location shift and depleting the isotopic value of the vapor transported into eastern Brazil, which almost entirely contributes to the δ 18O p depletion in eastern Brazil (SE pole). In contrast, the moisture source location change and local condensation change (due to the lowering convergence level and increased rain reevaporation in unsaturated subcloud layers) contribute nearly equally to the δ 18O p enrichment in the central-western Amazon (NW pole). Therefore, although a clear inverse relationship between δ 18O p and rainfall in both dipole regions seems to support the “amount effect,” we argue that the local rainfall amount only partially interprets the millennial δ 18O p change in the central-western Amazon, while δ 18O p does not document local rainfall change in eastern Brazil. Thus, the paleoclimate community should be cautious when using δ 18O p as a proxy for past local precipitation in the TSA region. Finally, we discuss the discrepancy between the model and speleothem proxies on capturing the millennial δ 18O p dipole response and pose a challenge in reconciling the discrepancy.
Significance Statement
We want to comprehensively understand the hydroclimate footprints of δ 18O p and the mechanisms of the millennial variability of δ 18O p over tropical South America with the help of water tagging experiments performed by the isotope-enabled Community Earth System Model (iCESM). We argue that the millennial δ 18O p change in eastern Brazil mainly documents the moisture source location change associated with ITCZ migration and the change of the isotopic value of the incoming water vapor, instead of the local rainfall amount. In contrast, the central-western Amazon partially documents the moisture source location shift and local precipitation change. Our study cautions that one should not simply resort to the isotopic “amount effect” to reconstruct past precipitation in tropical regions without studying the mechanisms behind it.