Browse

You are looking at 71 - 80 of 5,230 items for :

  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: Content accessible to me x
Clear All
Free access
Noureddine Semane
,
Richard Anthes
,
Jeremiah Sjoberg
,
Sean Healy
, and
Benjamin Ruston

Abstract

We compare two seemingly different methods of estimating random error statistics (uncertainties) of observations, the three-cornered hat (3CH) method and Desroziers method, and show several examples of estimated uncertainties of COSMIC-2 (C2) radio occultation (RO) observations. The two methods yield similar results, attesting to the validity of both. The small differences provide insight into the sensitivity of the methods to the assumptions and computational details. These estimates of RO error statistics differ considerably from several RO error models used by operational weather forecast centers, suggesting that the impact of RO observations on forecasts can be improved by adjusting the RO error models to agree more closely with the RO error statistics. Both methods show RO uncertainty estimates that vary with latitude. In the troposphere, uncertainties are higher in the tropics than in the subtropics and middle latitudes. In the upper stratosphere–lower mesosphere, we find the reverse, with tropical uncertainties slightly less than in the subtropics and higher latitudes. The uncertainty estimates from the two techniques also show similar variations between a 31-day period during Northern Hemisphere tropical cyclone season (16 August–15 September 2020) and a month near the vernal equinox (April 2021). Finally, we find a relationship between the vertical variation of the C2 estimated uncertainties and atmospheric variability, as measured by the standard deviation of the C2 sample. The convergence of the error estimates and the standard deviations above 40 km indicates a lessening impact of assimilating RO above this level.

Significance Statement

Uncertainties of observations are of general interest and their knowledge is important for assimilation in numerical weather prediction models. This paper compares two methods of estimating these uncertainties and shows that they give nearly identical results under certain conditions. The estimation of the COSMIC-2 bending angle uncertainties and how they compare to the assumed bending angle error models in several operational weather centers suggests that there is an opportunity for obtaining improved impact of RO observations in numerical model forecasts. Finally, the relationship between the COSMIC-2 bending angle errors and atmospheric variability provides insight into the sources of RO observational uncertainties.

Open access
G. Matthews

Abstract

Better predictions of global warming can be enabled by tuning legacy and current computer simulations to Earth radiation budget (ERB) measurements. Since the 1970s, such orbital results exist, and the next-generation instruments such as one called “Libera” are in production. Climate communities have requested that new ERB observing system missions like these have calibration accuracy obtaining significantly improved calibration SI traceability and stability. This is to prevent untracked instrument calibration drifts that could lead to false conclusions on climate change. Based on experience from previous ERB missions, the alternative concept presented here utilizes directly viewing solar calibration, for cloud-size Earth measurement resolution at <1% accuracy. However, it neglects complex already used calibration technology like solar diffusers and onboard lights, allowing new lower cost/risk unconsidered spectral characterizing concepts to be introduced for today’s technology. Also in contrast to near future ERB concepts already being produced, this enables in-flight wavelength dependent calibration of Earth-observing telescopes using direct solar views, through narrowband filters continuously characterized on-orbit.

Open access
Dudley B. Chelton
,
Roger M. Samelson
, and
J. Thomas Farrar

Abstract

The Ka-band Radar Interferometer (KaRIn) on the Surface Water and Ocean Topography (SWOT) satellite will revolutionize satellite altimetry by measuring sea surface height (SSH) with unprecedented accuracy and resolution across two 50-km swaths separated by a 20-km gap. The original plan to provide an SSH product with a footprint diameter of 1 km has changed to providing two SSH data products with footprint diameters of 0.5 and 2 km. The swath-averaged standard deviations and wavenumber spectra of the uncorrelated measurement errors for these footprints are derived from the SWOT science requirements that are expressed in terms of the wavenumber spectrum of SSH after smoothing with a filter cutoff wavelength of 15 km. The availability of two-dimensional fields of SSH within the measurement swaths will provide the first spaceborne estimates of instantaneous surface velocity and vorticity through the geostrophic equations. The swath-averaged standard deviations of the noise in estimates of velocity and vorticity derived by propagation of the uncorrelated SSH measurement noise through the finite difference approximations of the derivatives are shown to be too large for the SWOT data products to be used directly in most applications, even for the coarsest footprint diameter of 2 km. It is shown from wavenumber spectra and maps constructed from simulated SWOT data that additional smoothing will be required for most applications of SWOT estimates of velocity and vorticity. Equations are presented for the swath-averaged standard deviations and wavenumber spectra of residual noise in SSH and geostrophically computed velocity and vorticity after isotropic two-dimensional smoothing for any user-defined smoother and filter cutoff wavelength of the smoothing.

Open access
Luke Kachelein
,
Bruce D. Cornuelle
,
Sarah T. Gille
, and
Matthew R. Mazloff

Abstract

A novel tidal analysis package (red_tide) has been developed to characterize low-amplitude non-phase-locked tidal energy and dominant tidal peaks in noisy, irregularly sampled, or gap-prone time series. We recover tidal information by expanding conventional harmonic analysis to include prior information and assumptions about the statistics of a process, such as the assumption of a spectrally colored background, treated as nontidal noise. This is implemented using Bayesian maximum posterior estimation and assuming Gaussian prior distributions. We utilize a hierarchy of test cases, including synthetic data and observations, to evaluate this method and its relevance to analysis of data with a tidal component and an energetic nontidal background. Analysis of synthetic test cases shows that the methodology provides robust tidal estimates. When the background energy spectrum is nearly spectrally white, red_tide results replicate results from ordinary least squares (OLS) commonly used in other tidal packages. When background spectra are red (a spectral slope of −2 or steeper), red_tide’s estimates represent a measurable improvement over OLS. The approach highlights the presence of tidal variability and low-amplitude constituents in observations by allowing arbitrarily configurable fitted frequencies and prior statistics that constrain solutions. These techniques have been implemented in MATLAB in order to analyze tidal data with non-phase-locked components and an energetic background that pose challenges to the commonly used OLS approach.

Open access
Free access
Emy Alerskans
,
Cristian Lussana
,
Thomas N. Nipen
, and
Ivar A. Seierstad

Abstract

Crowdsourced meteorological observations are becoming more prevalent and in some countries their spatial resolution already far exceeds that of traditional networks. However, due to the larger uncertainty associated with these observations, quality control (QC) is an essential step. Spatial QC methods are especially well suited for such dense networks since they utilize information from nearby stations. The performance of such methods usually depends on the choice of their parameters. There is, however, currently no specific procedure on how to choose the optimal settings of such spatial QC methods. In this study we present a framework for tuning a spatial QC method for a dense network of meteorological observations. The method uses artificial errors in order to perturb the observations to simulate the effect of having errors. A cost function, based on the hit and false alarm rate, for optimizing the spatial QC method is introduced. The parameters of the spatial QC method are then tuned such that the cost function is optimized. The application of the framework to the tuning of a spatial QC method for a dense network of crowdsourced observations in Denmark is presented. Our findings show that the optimal settings vary with the error magnitude, time of day, and station density. Furthermore, we show that when the station network is sparse, a better performance of the spatial QC method can be obtained by including crowdsourced observations from another denser network.

Open access
Zhijin Qiu
,
Tong Hu
,
Bo Wang
,
Jing Zou
, and
Zhiqian Li

Abstract

The evaporation duct is an abnormal refractive phenomenon with wide distribution and frequency occurrence at the boundary between the atmosphere and the ocean, which directly affects electromagnetic wave propagation. In recent years, the use of meteorological and hydrological data to predict the evaporation duct height has become an emerging and promising approach. There are some evaporation duct models that have been proposed based on the Monin–Obukhov similarity theory. However, each model adopts different stability functions and roughness length parameterization methods, so the prediction accuracies are different under different environmental conditions. To improve the prediction accuracy of the evaporation duct under different environmental conditions, a model selection optimization method (MSOM) of the evaporation duct model is proposed based on sensitivity analysis. According to the sensitivity of each model to input parameters analyzed by the sensor observation accuracy, curve graph, and Sobol sensitivity, the model input parameters are divided into several intervals. Then the optimization model is selected in different intervals. The model was established using numerical simulation data from local areas in the South China Sea, and its accuracy was verified by the observational data from the offshore observation platform located in the South China Sea. The results show that the MSOM can effectively improve the prediction accuracy of the evaporation duct height. Under unstable conditions, the maximum relative error is reduced by 7.1%, and under stable conditions, the relative error is reduced by 10.7%.

Significance Statement

The evaporation duct height has a significant effect on marine radar or wireless apparatus applications. To obtain the evaporation duct height, there are some evaporation duct models that have been proposed. However, different evaporation duct models are applicable to different meteorological and hydrological environments. A single model cannot achieve accurate evaporation duct height predictions in all environments. We propose a model selection optimization method of the evaporation duct model based on sensitivity analysis. This method can dynamically select the optimal model according to different meteorological and hydrological environment, and improve the prediction accuracy of the evaporation duct height. Under unstable conditions, the maximum relative error is reduced by 7.1%, and under stable conditions, the relative error is reduced by 10.7%.

Open access
Beth Reid
and
Tom Swanson

Abstract

Loon LLC collected 794 000 h of corona current observations between 15 and ∼20 km above sea level with time resolution between 1 and 30 min. We are publicly releasing this dataset to enable the research community’s understanding of electrical activity in the stratosphere. We validate the reliability of these measurements by aligning our flight data with both nearby Geostationary Lightning Mapper (GLM) events and the Convective Diagnostic Oceanic (CDO) indicator. Corona current observations that exceeded the sensor maximum of 10 μA were associated with high GLM optical flux accumulations along the flight trajectory. Using the CDO indicator as a persistence forecast for future electrical activity was effective at predicting corona current events, and so we highly recommend this data source for real-time stratospheric navigation for vehicles sensitive to the harsh electrical environment of the stratosphere.

Significance Statement

Loon LLC operated a fleet of balloons in the stratosphere, between 15 and 20 km above sea level. The balloons were instrumented with a sensor that measured the current flowing through a wire dangling from the flight vehicle. The observed currents were caused by the motion of nearby charged particles that are often associated with thunderstorms and lightning activity. In this paper we show that Loon’s sensor registered current at the same time lightning was recorded near the balloon by other instruments like the Geostationary Lightning Mapper satellite. This is the first dataset of its kind and size, reaching 794 000 flight hours. We are publicly releasing these data in hopes of aiding scientific discovery by researchers and to help future stratospheric vehicle operators better understand and plan for the electrical environment.

Open access
C. O. Collins III
and
R. E. Jensen

Abstract

We identify and characterize an error in the National Data Buoy Center (NDBC) wave records due to the sustained tilt of a buoy under high winds. We use a standard, operational 3-m aluminum discus buoy from NDBC with two wave systems, one gimballed, and the other strapped down but uncorrected. By comparing the two, we find that the most extreme significant wave heights are systematically overestimated. The overestimation is shown to be confined to a region around the peak frequency in the spectra: 0.05–0.15 Hz. Wave direction and directional spread are unaffected. A bias due to tilt error can be observed starting at winds of 10 m s−1 or wave heights of 4 m. The bias increases as a function of wind speed and wave height, i.e., the bias is +10% when winds are 20 m s−1. Very high waves and winds are relatively rare, so while the tilt error does not affect overall statistics and basic analyses it could potentially affect analysis sensitive to the extremes. A correction is derived for significant wave height, which is a quadratic function of wind speed. The correction is shown to reduce wave heights in uncorrected records, but is found inadequate for general use. There is evidence of tilt error at other NDBC stations, but the full extent of prevalence in the record is not known at this time.

Open access