Browse

You are looking at 81 - 90 of 3,146 items for :

  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All
Fredric Lipschultz
,
David D. Herring
,
Andrea J. Ray
,
Jay Alder
,
LuAnn Dahlman
,
Arthur DeGaetano
,
James F. Fox
,
Edward Gardiner
,
Jamie Herring
,
Jeff Hicks
,
Forrest Melton
,
Philip E. Morefield
, and
William V. Sweet
Full access
Samuel Jonson Sutanto
,
Henny A. J. Van Lanen
,
Fredrik Wetterhall
, and
Xavier Llort
Full access
Xiaogang He
,
Ming Pan
,
Zhongwang Wei
,
Eric F. Wood
, and
Justin Sheffield
Full access
J. M. Flores
,
G. Bourdin
,
O. Altaratz
,
M. Trainic
,
N. Lang-Yona
,
E. Dzimban
,
S. Steinau
,
F. Tettich
,
S. Planes
,
D. Allemand
,
S. Agostini
,
B. Banaigs
,
E. Boissin
,
E. Boss
,
E. Douville
,
D. Forcioli
,
P. Furla
,
P. E. Galand
,
M. Sullivan
,
É. Gilson
,
F. Lombard
,
C. Moulin
,
S. Pesant
,
J. Poulain
,
S. Reynaud
,
S. Romac
,
S. Sunagawa
,
O. P. Thomas
,
R. Troublé
,
C. de Vargas
,
R. Vega Thurber
,
C. R. Voolstra
,
P. Wincker
,
D. Zoccola
,
C. Bowler
,
G. Gorsky
,
Y. Rudich
,
A. Vardi
, and
I. Koren
Full access
Diana Greenslade
,
Mark Hemer
,
Alex Babanin
,
Ryan Lowe
,
Ian Turner
,
Hannah Power
,
Ian Young
,
Daniel Ierodiaconou
,
Greg Hibbert
,
Greg Williams
,
Saima Aijaz
,
João Albuquerque
,
Stewart Allen
,
Michael Banner
,
Paul Branson
,
Steve Buchan
,
Andrew Burton
,
John Bye
,
Nick Cartwright
,
Amin Chabchoub
,
Frank Colberg
,
Stephanie Contardo
,
Francois Dufois
,
Craig Earl-Spurr
,
David Farr
,
Ian Goodwin
,
Jim Gunson
,
Jeff Hansen
,
David Hanslow
,
Mitchell Harley
,
Yasha Hetzel
,
Ron Hoeke
,
Nicole Jones
,
Michael Kinsela
,
Qingxiang Liu
,
Oleg Makarynskyy
,
Hayden Marcollo
,
Said Mazaheri
,
Jason McConochie
,
Grant Millar
,
Tim Moltmann
,
Neal Moodie
,
Joao Morim
,
Russel Morison
,
Jana Orszaghova
,
Charitha Pattiaratchi
,
Andrew Pomeroy
,
Roger Proctor
,
David Provis
,
Ruth Reef
,
Dirk Rijnsdorp
,
Martin Rutherford
,
Eric Schulz
,
Jake Shayer
,
Kristen Splinter
,
Craig Steinberg
,
Darrell Strauss
,
Greg Stuart
,
Graham Symonds
,
Karina Tarbath
,
Daniel Taylor
,
James Taylor
,
Darshani Thotagamuwage
,
Alessandro Toffoli
,
Alireza Valizadeh
,
Jonathan van Hazel
,
Guilherme Vieira da Silva
,
Moritz Wandres
,
Colin Whittaker
,
David Williams
,
Gundula Winter
,
Jiangtao Xu
,
Aihong Zhong
, and
Stefan Zieger
Full access
Amin Dezfuli
Full access
William I. Gustafson Jr.
,
Andrew M. Vogelmann
,
Zhijin Li
,
Xiaoping Cheng
,
Kyle K. Dumas
,
Satoshi Endo
,
Karen L. Johnson
,
Bhargavi Krishna
,
Tami Fairless
, and
Heng Xiao
Full access
Susan C. van den Heever
,
Leah D. Grant
,
Sean W. Freeman
,
Peter J. Marinescu
,
Julie Barnum
,
Jennie Bukowski
,
Eleanor Casas
,
Aryeh J. Drager
,
Brody Fuchs
,
Gregory R. Herman
,
Stacey M. Hitchcock
,
Patrick C. Kennedy
,
Erik R. Nielsen
,
J. Minnie Park
,
Kristen Rasmussen
,
Muhammad Naufal Razin
,
Ryan Riesenberg
,
Emily Riley Dellaripa
,
Christopher J. Slocum
,
Benjamin A. Toms
, and
Adrian van den Heever

Abstract

The intensity of deep convective storms is driven in part by the strength of their updrafts and cold pools. In spite of the importance of these storm features, they can be poorly represented within numerical models. This has been attributed to model parameterizations, grid resolution, and the lack of appropriate observations with which to evaluate such simulations. The overarching goal of the Colorado State University Convective CLoud Outflows and UpDrafts Experiment (C3LOUD-Ex) was to enhance our understanding of deep convective storm processes and their representation within numerical models. To address this goal, a field campaign was conducted during July 2016 and May–June 2017 over northeastern Colorado, southeastern Wyoming, and southwestern Nebraska. Pivotal to the experiment was a novel “Flying Curtain” strategy designed around simultaneously employing a fleet of uncrewed aerial systems (UAS; or drones), high-frequency radiosonde launches, and surface observations to obtain detailed measurements of the spatial and temporal heterogeneities of cold pools. Updraft velocities were observed using targeted radiosondes and radars. Extensive datasets were successfully collected for 16 cold pool–focused and seven updraft-focused case studies. The updraft characteristics for all seven supercell updraft cases are compared and provide a useful database for model evaluation. An overview of the 16 cold pools’ characteristics is presented, and an in-depth analysis of one of the cold pool cases suggests that spatial variations in cold pool properties occur on spatial scales from O(100) m through to O(1) km. Processes responsible for the cold pool observations are explored and support recent high-resolution modeling results.

Full access
Jordan G. Powers
,
Kelly K. Werner
,
David O. Gill
,
Yuh-Lang Lin
, and
Russ S. Schumacher

Abstract

The Weather Research and Forecasting (WRF) Model is a numerical weather prediction model supported by the National Center for Atmospheric Research (NCAR) to a worldwide community of users. In recognition of the growing use of cloud computing, NCAR is now supporting the model in cloud environments. Specifically, NCAR has established WRF setups with select cloud service providers and produced documentation and tutorials on running WRF in the cloud. Described here are considerations in WRF cloud use and the supported resources, which include cloud setups for the WRF system and a cloud-based tool for model code testing.

Full access
K. Dieter Klaes
,
Jörg Ackermann
,
Craig Anderson
,
Yago Andres
,
Thomas August
,
Régis Borde
,
Bojan Bojkov
,
Leonid Butenko
,
Alessandra Cacciari
,
Dorothée Coppens
,
Marc Crapeau
,
Stephanie Guedj
,
Olivier Hautecoeur
,
Tim Hultberg
,
Rüdiger Lang
,
Stefanie Linow
,
Christian Marquardt
,
Rosemarie Munro
,
Carlo Pettirossi
,
Gabriele Poli
,
Francesca Ticconi
,
Olivier Vandermarcq
,
Mayte Vasquez
, and
Margarita Vazquez-Navarro

Abstract

After successful launch in November 2018 and successful commissioning of Metop-C, all three satellites of the EUMETSAT Polar System (EPS) are in orbit together and operational. EPS is part of the Initial Joint Polar System (IJPS) with the United States (NOAA) and provides the service in the midmorning orbit. The Metop satellites carry a mission payload of sounding and imaging instruments, which allow provision of support to operational meteorology and climate monitoring, which are the main mission objectives for EPS. Applications include numerical weather prediction, atmospheric composition monitoring, and marine meteorology. Climate monitoring is supported through the generation of long time series through the program duration of 20+ years. The payload was developed and contributed by partners, including NOAA, CNES, and ESA. EUMETSAT and ESA developed the space segment in cooperation. The system has proven its value since the first satellite Metop-A, with enhanced products at high reliability for atmospheric sounding, delivered a very strong positive impact on NWP and results beyond expectations for atmospheric composition and chemistry applications. Having multiple satellites in orbit—now three—has enabled enhanced and additional products with increased impact, like atmospheric motion vector products at latitudes not accessible to geostationary observations or increased probability of radio occultations and hence atmospheric soundings with the Global Navigation Satellite System (GNSS) Radio-Occultation Atmospheric Sounder (GRAS) instruments. The paper gives an overview of the system and the embarked payload and discusses the benefits of generated products for applications and services. The conclusions point to the follow-on system, currently under development and assuring continuity for another 20+ years.

Full access