Browse

You are looking at 81 - 90 of 8,106 items for :

  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: Content accessible to me x
Clear All
Xiaohui Huang
,
Hongtao Wang
, and
Lizhen Gao

Abstract

The effect of temperature on flow and pollutant dispersion around an isolated building was investigated by computational fluid dynamics. First, the accuracy of the standard k–ε turbulence model in simulating the thermal effect on the flow and dispersion was assessed. The results showed that the reattachment of the numerical simulation behind the building was longer than that in the experiment because it could not reproduce the periodic fluctuations in the wake region and that the momentum transfer in the lateral direction was underestimated. Despite this, the temperature and concentration of the numerical simulation were in good agreement with the experimental results. Then, the standard k–ε turbulence model was adopted to investigate the effect of the ground temperature on flow and dispersion. The result indicated that, with the increase in temperature, the reattachment length behind the building significantly decreased and the vertical upward velocity increased, suggesting that rising temperature changed the flow. As the flow changed, the pollutant dispersion also changed. The pollutant plume depth increased while its width decreased with increasing ground temperature. It can be seen from the pollutant flux analysis that both convective transport and turbulent transport play important roles in vertical dispersion. The influence of ground temperature on convective motion was more obvious than that on turbulent motion because of the changed airflow.

Significance Statement

(i) The accuracy of the standard k–ε turbulence model in simulating the thermal effect on the flow and dispersion was assessed. The results showed that the reattachment of the numerical simulation behind the building was longer than that in the experiment because it could not reproduce the periodic fluctuations in the wake region and that the momentum transfer in the lateral direction was underestimated. Despite this, the temperature and concentration of the numerical simulation were in good agreement with the experimental results. (ii) Rising temperature not only increases turbulent motion but also alters airflow and pollutant plume morphology.

Free access
Michael G. Sanderson
,
Marta Teixeira
, and
António Graça

Abstract

Cold-air pools can have several different impacts on viticulture, including final grape quality and yields. This study focuses on cold pools in the upper Douro Valley, which is one of the most important viticultural regions of northern Portugal. First, digital elevation model data were analyzed to identify pixels corresponding to the valley floors of the Douro and selected side valleys. Next, the topographic amplification factor was calculated for each of these pixels. Down-valley gradients in the topographic amplification factor were used to identify locations where cold air in the valley was likely to pool. High-time-resolution meteorological data recorded between January 2011 and December 2017 were analyzed to identify cold-pool events at one location in the main Douro Valley. The cold pools were assigned to seven different categories on the basis of their temporal behavior. There was a clear seasonal cycle in numbers of cold pools, with most observed during winter and the fewest in summer. The maximum strengths of the cold pools could occur at any time during the night, although the majority peaked around the middle of the night. This study is believed to be the first to examine cold pools in the upper Douro Valley.

Open access
Yongke Yang
,
Pengfeng Xiao
,
Xueliang Zhang
,
Xuezhi Feng
,
Jiangeng Wang
,
Nan Ye
,
Zuo Wang
,
Guangjun He
, and
Lizao Ye

Abstract

Near-surface air temperature lapse rate (NSATLR) is vital for hydrological simulation and mountain climate research in snowmelt-dominated regions. In this study, NSATLRs of two vertical zones (i.e., mountain grassland–coniferous forest belt and alpine meadow belt) of the Manasi River basin on the northern slope of the Tianshan Mountains were calculated using the near-surface air temperature data from 18 observation stations. Furthermore, temporal variations of NSATLRs of these two vertical zones at seasonal, monthly, and daily scales were analyzed, combined with altitudinal differences of local environments. The results show that the temporal variations of NSATLRs are different between these two vertical zones. The steepest monthly NSATLR occurs in July in the mountain grassland–coniferous forest belt and in April in the alpine meadow belt. In spring, summer, and autumn, the hourly NSATLRs in the mountain grassland–coniferous forest belt generally steepen with increasing solar radiation and vice versa, contrary to those in the alpine meadow belt. During winter, the hourly NSATLRs on sunny days are overall positive at night but negative during the day in the mountain grassland–coniferous forest belt. The findings of this study indicate that it is necessary to divide mountains with similar local environments to the study area into different vertical zones to accurately estimate NSATLR, and the use of a fixed NSATLR for different months and vertical zones is not suitable for snowmelt runoff modeling in snow-dominated regions such as the northern slope of the Tianshan Mountains.

Significance Statement

This study aims to investigate the altitudinal and temporal variations of near-surface air temperature lapse rate (NSATLR) on the northern slope of the Tianshan Mountains and how mountain environments affect NSATLR. This is important because altitudinal differences of mountain environments lead to different NSATLRs, and these altitudinal variations on the northern slope of the Tianshan Mountains are different from those on the Alps at the same latitude. Our results explain how altitudinal differences of mountain environments affect NSATLRs; hence, using a fixed NSATLR for different months and vertical zones is inappropriate, and estimating NSATLRs for different vertical zones is necessary.

Free access
Fiaz Hussain
,
Gokmen Ceribasi
,
Ahmet Iyad Ceyhunlu
,
Ray-Shyan Wu
,
Muhammad Jehanzeb Masud Cheema
,
Rana Shahzad Noor
,
Muhammad Naveed Anjum
,
Muhammad Azam
, and
Arslan Afzal

Abstract

The trend analysis approach is adopted for the prediction of future climatological behavior and climate change impact on agriculture, the environment, and water resources. In this study, the innovative trend pivot analysis method (ITPAM) and trend polygon star concept method were applied for precipitation trend detection at 11 stations located in the Soan River basin (SRB), Potohar region, Pakistan. Polygon graphics of total monthly precipitation data were created and trends length and slope were calculated separately for arithmetic mean and standard deviation. As a result, the innovative methods produced useful scientific information and helped in identifying, interpreting, and calculating monthly shifts under different trend behaviors, that is, increase in some stations and decrease in others of precipitation data. This increasing and decreasing variability emerges from climate change. The risk graphs of the total monthly precipitation and monthly polygonal trends appear to show changes in the trend of meteorological data in the Potohar region of Pakistan. The monsoonal rainfall of all stations shows a complex nature of behavior, and monthly distribution is uneven. There is a decreasing trend of rainfall in high land stations of SRB with a significant change between the first dataset and the second dataset in July and August. It was examined that monsoon rainfall is increasing in lowland stations indicating a shifting pattern of monsoonal rainfall from highland to lowland areas of SRB. The increasing and decreasing trends in different periods with evidence of seasonal variations may cause irregular behavior in the water resources and agricultural sectors.

Significance Statement

The monthly polygonal trends with risk graphs of total monthly precipitation data depicted a clear picture of climate change effects in the Potohar region of Pakistan. The monsoonal rainfall showed a significant decreasing trend in highland stations and an increasing trend in lowland stations, indicating a shifting pattern of monsoonal rainfall from highland to lowland areas.

Open access
Christian H. Boyer
and
Jason M. Keeler

Abstract

Recent idealized modeling studies have highlighted the importance of explicitly simulating realistic convective boundary layer (CBL) structures to assess and represent their influence on mesoscale phenomena. The choice of lateral boundary conditions (LBCs) has a substantial impact on these turbulent structures, including the distribution of kinematic and thermodynamic properties within the CBL. While use of periodic LBCs is ideal, open LBCs are required for nonuniform domains (e.g., multiple air masses or land surface types). However, open LBCs result in an unrealistic, laminar CBL structure near the upstream boundary that undoubtedly impacts the evolution of any simulated phenomena. Therefore, there is a need for a modified open LBC option to mitigate this unrealistic structure, while still permitting users to simulate phenomena in nonuniform domains. The Pennsylvania State University–NCAR Cloud Model 1 (CM1), version 19.8, includes an optional inflow-nudging technique to nudge inflow to the base-state wind profile. For the present study, the authors modified this method to one that nudges toward a continually updated, horizontally averaged profile so that the technique may be used for phenomena under evolving conditions. Simulations using LBC choices, including nudging to either the base state or horizontal average, were evaluated relative to respective dual-periodic LBC control simulations with or without vertical wind shear. The horizontal average nudging technique outperformed the traditional open LBCs and nudging to the base state, as demonstrated using a histogram matching technique applied to grid points within the CBL. Ultimately, this work can be used to assist modelers in assessing which LBCs are appropriate for their intended use.

Free access
P. T. May
,
B. Trewin
,
J. R. Nairn
,
B. Ostendorf
,
Chun-Hsu Su
, and
A. Moise

Abstract

This work examines the diurnal and seasonal variability of near-surface temperature and humidity at several large areas with high population density within the Maritime Continent using the Bureau of Meteorology Atmospheric Regional Reanalysis (BARRA) 12-km-resolution dataset that covers the period 1990–2019. The diurnal cycle is examined in detail, with a key feature being the relatively small diurnal variation of the wet-bulb temperature T WB when compared with the temperature and dewpoint temperature TD . The diurnal variability is strongly modulated by the monsoons with their increased rainfall and cloud cover. The near-surface signals associated with the Madden–Julian oscillation across the domains are relatively weak. Dry and humid temperature extremes are examined for regional and seasonal variability. The dry and moist variable extremes occur at different times of year, but each have spatially coherent structure.

Significance Statement

This paper examines the climatological variations of near-surface temperature and humidity and their extremes in four locations in the “Maritime Continent.” This is important because there are significant variations potentially affecting human and ecosystem health and its resilience to climate change.

Free access
S. M. Shajedul Karim
,
Yuh-Lang Lin
, and
Michael L. Kaplan

Abstract

Numerical simulations were conducted to investigate the upstream environment’s impacts on the airflow over the lee slope of the Cuyamaca Mountains (CM) near San Diego, California, during the Cedar Fire that occurred from 25 to 29 October 2003. The upstream environment was largely controlled by a southwest–northeast-oriented upper-tropospheric jet streak that rotated around a positively tilted ridge within the polar jet stream. Three sequential dynamical processes were found to be responsible for modifying the mesoscale environment conducive to low-level momentum and dry air that sustained the Cedar Fire. First, the sinking motion associated with the indirect circulation of the jet streak’s exit region strengthened the midtropospheric flow over the southern Rockies and the lee slope of the Sawatch and San Juan Ranges, thus modestly affecting the airflow by enhancing the downslope wind over the CM. Second, consistent with the coupling process between the upper-level sinking motion, downward momentum transfer, and developing lower-layer mountain waves, a wave-induced critical level over the mountain produced wave breaking, which was characterized by a strong turbulent mixed region with a wind reversal on top of it. This critical level helped to produce severe downslope winds leading to the third stage: a hydraulic jump that subsequently enhanced the downstream extent of the strong winds conducive to the favorable lower-tropospheric environment for rapid fire spread. Consistent with these findings was the deep-layer resonance between the mountain surface and tropopause, which had a strong impact on strengthening the severe downslope winds over the lee slope of the CM accompanying the elevated strong easterly jet at low levels.

Free access
Agostino Manzato
,
Andrea Cicogna
,
Massimo Centore
,
Paolo Battistutta
, and
Mauro Trevisan

Abstract

Although hail is a well-known meteorological hazard, it is hard to find long records of hail observed at the ground with high spatial resolution. Most hail climatologies are based on remote sensing observations or inhomogeneous networks of human observers. In the plain of Friuli Venezia Giulia (northeast Italy), a hailpad network of 367 stations has operated since 1988. During the 1988–2016 warm seasons, 7782 hailpads were impacted by hailstones and more than one million dents were observed and automatically analyzed, even though only 63% of them were associated with valid hailstone dents. In this work, this large quantity of direct hail observations is used to build a hail climatology in terms of hailstone size, areal density, and flux of kinetic energy. From the empirical distributions of data collected, it is possible to fit statistical distributions to the different hailstone/hailpad behaviors. In particular, it is also possible to find an approximate estimation of the flux of kinetic energy based only on the largest hail diameter observed on the hailpad. Last, temporal and spatial distributions of these characteristics are investigated. Hailstones are larger along a southwestern-to-northeastern alley, which is parallel to the main pre-Alpine crest, with the very largest sizes being more frequent on the southwestern corner. The only hail climate change signal that one can infer from the analysis of these multidecadal trends is that, in more recent years, hailstorms seem to produce fewer and larger hailstones, on average.

Free access
Troy J. Zaremba
,
Robert M. Rauber
,
Samuel Haimov
,
Bart Geerts
,
Jeffrey R. French
,
Coltin Grasmick
,
Kaylee Heimes
,
Sarah A. Tessendorf
,
Katja Friedrich
,
Lulin Xue
,
Roy M. Rasmussen
,
Melvin L. Kunkel
, and
Derek R. Blestrud

Abstract

Vertical motions over the complex terrain of Idaho’s Payette River basin were observed by the Wyoming Cloud Radar (WCR) during 23 flights of the Wyoming King Air during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) field campaign. The WCR measured radial velocity Vr , which includes the reflectivity-weighted terminal velocity of hydrometeors Vt , vertical air velocity w, horizontal wind contributions as a result of aircraft attitude deviations, and aircraft motion. Aircraft motion was removed through standard processing. To retrieve vertical radial velocity W, Vr was corrected using rawinsonde data and aircraft attitude measurements; w was then calculated by subtracting the mean W ( W ¯ ) at a given height along a flight leg long enough for W ¯ to equal the mean reflectivity-weighted terminal velocity V t ¯ at that height. The accuracy of the w and V t ¯ retrievals were dependent on satisfying assumptions along a given flight leg that the winds at a given altitude above/below the aircraft did not vary, the vertical air motions at a given altitude sum to 0 m s−1, and V t ¯ at a given altitude did not vary. The uncertainty in the w retrieval associated with each assumption is evaluated. Case studies and a projectwide summary show that this methodology can provide estimates of w that closely match gust probe measurements of w at the aircraft level. Flight legs with little variation in equivalent reflectivity factor at a given height and large horizontal echo extent were associated with the least retrieval uncertainty. The greatest uncertainty occurred in regions with isolated convective turrets or at altitudes where split cloud layers were present.

Free access
Troy J. Zaremba
,
Kaylee Heimes
,
Robert M. Rauber
,
Bart Geerts
,
Jeffrey R. French
,
Coltin Grasmick
,
Sarah A. Tessendorf
,
Lulin Xue
,
Katja Friedrich
,
Roy M. Rasmussen
,
Melvin L. Kunkel
, and
Derek R. Blestrud

Abstract

Updrafts in wintertime cloud systems over mountainous regions can be described as fixed, mechanically driven by the terrain under a given ambient wind and stability profile (i.e., vertically propagating gravity waves tied to flow over topography), and transient, associated primarily with vertical wind shear and conditional instability within passing weather systems. This analysis quantifies the magnitude of fixed and transient updraft structures over the Payette River basin sampled during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). Vertical motions were retrieved from Wyoming Cloud Radar measurements of radial velocity using the algorithm presented in Part I. Transient circulations were removed, and fixed orographic circulations were quantified by averaging vertical circulations along repeated cross sections over the same terrain during the campaign. Fixed orographic vertical circulations had magnitudes of 0.3–0.5 m s−1. These fixed vertical circulations were composed of a background circulation in which transient circulations were embedded. Transient vertical circulations are shown to be associated with transient wave motions, cloud-top generating cells, convection, and turbulence. Representative transient vertical circulations are illustrated, and data from rawinsondes over the Payette River basin are used to infer the relationship of the vertical circulations to shear and instability. Maximum updrafts are shown to exceed 5 m s−1 within Kelvin–Helmholtz waves, 4 m s−1 associated with transient gravity waves, 3 m s−1 in generating cells, 6 m s−1 in elevated convection, 4 m s−1 in surface-based deep convection, 5 m s−1 in boundary layer turbulence, and 9 m s−1 in shear-induced turbulence.

Free access