You are looking at 1 - 2 of 2 items for :

  • Process-Oriented Model Diagnostics x
  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All
Maik Renner, Axel Kleidon, Martyn Clark, Bart Nijssen, Marvin Heidkamp, Martin Best, and Gab Abramowitz


The diurnal cycle of solar radiation represents the strongest energetic forcing and dominates the exchange of heat and mass of the land surface with the atmosphere. This diurnal heat redistribution represents a core of land–atmosphere coupling that should be accurately represented in land surface models (LSMs), which are critical parts of weather and climate models. We employ a diagnostic model evaluation approach using a signature-based metric that describes the diurnal variation of heat fluxes. The metric is obtained by decomposing the diurnal variation of surface heat fluxes into their direct response and the phase lag to incoming solar radiation. We employ the output of 13 different LSMs driven with meteorological forcing of 20 FLUXNET sites (PLUMBER dataset). All LSMs show a poor representation of the evaporative fraction and thus the diurnal magnitude of the sensible and latent heat flux under cloud-free conditions. In addition, we find that the diurnal phase of both heat fluxes is poorly represented. The best performing model only reproduces 33% of the evaluated evaporative conditions across the sites. The poor performance of the diurnal cycle of turbulent heat exchange appears to be linked to how models solve for the surface energy balance and redistribute heat into the subsurface. We conclude that a systematic evaluation of diurnal signatures is likely to help to improve the simulated diurnal cycle, better represent land–atmosphere interactions, and therefore improve simulations of the near-surface climate.

Open access
Grey S. Nearing, Benjamin L. Ruddell, Martyn P. Clark, Bart Nijssen, and Christa Peters-Lidard


We propose a conceptual and theoretical foundation for information-based model benchmarking and process diagnostics that provides diagnostic insight into model performance and model realism. We benchmark against a bounded estimate of the information contained in model inputs to obtain a bounded estimate of information lost due to model error, and we perform process-level diagnostics by taking differences between modeled versus observed transfer entropy networks. We use this methodology to reanalyze the recent Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) land model intercomparison project that includes the following models: CABLE, CH-TESSEL, COLA-SSiB, ISBA-SURFEX, JULES, Mosaic, Noah, and ORCHIDEE. We report that these models (i) use only roughly half of the information available from meteorological inputs about observed surface energy fluxes, (ii) do not use all information from meteorological inputs about long-term Budyko-type water balances, (iii) do not capture spatial heterogeneities in surface processes, and (iv) all suffer from similar patterns of process-level structural error. Because the PLUMBER intercomparison project did not report model parameter values, it is impossible to know whether process-level error patterns are due to model structural error or parameter error, although our proposed information-theoretic methodology could distinguish between these two issues if parameter values were reported. We conclude that there is room for significant improvement to the current generation of land models and their parameters. We also suggest two simple guidelines to make future community-wide model evaluation and intercomparison experiments more informative.

Full access