Browse

You are looking at 1 - 10 of 2,526 items for :

  • Weather and Forecasting x
  • Refine by Access: Content accessible to me x
Clear All
Stephanie S. Rushley
,
Matthew A. Janiga
,
William Crawford
,
Carolyn A. Reynolds
,
William Komaromi
, and
Justin McLay

Abstract

Accurately simulating the Madden–Julian oscillation (MJO), which dominates intraseasonal (30–90 day) variability in the tropics, is critical to predicting tropical cyclones (TCs) and other phenomena at extended-range (2–3 week) time scales. MJO biases in intensity and propagation speed are a common problem in global coupled models. For example, the MJO in the Navy Earth System Prediction Capability (ESPC), a global coupled model, has been shown to be too strong and too fast, which has implications for the MJO–TC relationship in that model. The biases and extended-range prediction skill in the operational version of the Navy ESPC are compared to experiments applying different versions of analysis correction-based additive inflation (ACAI) to reduce model biases. ACAI is a method in which time-mean and stochastic perturbations based on analysis increments are added to the model tendencies with the goals of reducing systematic error and accounting for model uncertainty. Over the extended boreal summer (May–November), ACAI reduces the root-mean-squared error (RMSE) and improves the spread–skill relationship of the total tropical and MJO-filtered OLR and low-level zonal winds. While ACAI improves skill in the environmental fields of low-level absolute vorticity, potential intensity, and vertical wind shear, it degrades the skill in the relative humidity, which increases the positive bias in the genesis potential index (GPI) in the operational Navy ESPC. Northern Hemisphere integrated TC genesis biases are reduced (increased number of TCs) in the ACAI experiments, which is consistent with the positive GPI bias in the ACAI simulations.

Open access
David S. Richardson
,
Hannah L. Cloke
,
John A. Methven
, and
Florian Pappenberger

Abstract

We investigate the run-to-run consistency (jumpiness) of ensemble forecasts of tropical cyclone tracks from three global centers: ECMWF, the Met Office, and NCEP. We use a divergence function to quantify the change in cross-track position between consecutive ensemble forecasts initialized at 12-h intervals. Results for the 2019–21 North Atlantic hurricane season show that the jumpiness varied substantially between cases and centers, with no common cause across the different ensemble systems. Recent upgrades to the Met Office and NCEP ensembles reduced their overall jumpiness to match that of the ECMWF ensemble. The average divergence over the set of cases provides an objective measure of the expected change in cross-track position from one forecast to the next. For example, a user should expect on average that the ensemble mean position will change by around 80–90 km in the cross-track direction between a forecast for 120 h ahead and the updated forecast made 12 h later for the same valid time. This quantitative information can support users’ decision-making, for example, in deciding whether to act now or wait for the next forecast. We did not find any link between jumpiness and skill, indicating that users should not rely on the consistency between successive forecasts as a measure of confidence. Instead, we suggest that users should use ensemble spread and probabilistic information to assess forecast uncertainty, and consider multimodel combinations to reduce the effects of jumpiness.

Significance Statement

Forecasting the tracks of tropical cyclones is essential to mitigate their impacts on society. Numerical weather prediction models provide valuable guidance, but occasionally there is a large jump in the predicted track from one run to the next. This jumpiness complicates the creation and communication of consistent forecast advisories and early warnings. In this work we aim to better understand forecast jumpiness and we provide practical information to forecasters to help them better use the model guidance. We show that the jumpiest cases are different for different modeling centers, that recent model upgrades have reduced forecast jumpiness, and that there is not a strong link between jumpiness and forecast skill.

Open access
Joseph A. Grim
,
James O. Pinto
, and
David C. Dowell

Abstract

This study provides a comparison of the operational HRRR version 4 and its eventual successor, the experimental Rapid Refresh Forecast System (RRFS) model (summer 2022 version), at predicting the evolution of convective storm characteristics during widespread convective events that occurred primarily over the eastern United States during summer 2022. In total 32 widespread convective events were selected using observations from the MRMS composite reflectivity, which includes an equal number of MCSs, quasi-linear convective systems (QLCSs), clusters, and cellular convection. Each storm system was assessed on four primary characteristics: total storm area, total storm count, storm area ratio (an indicator of mean storm size), and storm size distributions. It was found that the HRRR predictions of total storm area were comparable to MRMS, while the RRFS overpredicted total storm area by 40%–60% depending on forecast lead time. Both models tended to underpredict storm counts particularly during the storm initiation and growth period. This bias in storm counts originates early in the model runs (forecast hour 1) and propagates through the simulation in both models indicating that both miss storm initiation events and/or merge individual storm objects too quickly. Thus, both models end up with mean storm sizes that are much larger than observed (RRFS more so than HRRR). Additional analyses revealed that the storm area and individual storm biases were largest for the clusters and cellular convective modes. These results can serve as a benchmark for assessing future versions of RRFS and will aid model users in interpreting forecast guidance.

Open access
Pamela L. Heinselman
,
Patrick C. Burke
,
Louis J. Wicker
,
Adam J. Clark
,
John S. Kain
,
Jidong Gao
,
Nusrat Yussouf
,
Thomas A. Jones
,
Patrick S. Skinner
,
Corey K. Potvin
,
Katie A. Wilson
,
Burkely T. Gallo
,
Montgomery L. Flora
,
Joshua Martin
,
Gerry Creager
,
Kent H. Knopfmeier
,
Yunheng Wang
,
Brian C. Matilla
,
David C. Dowell
,
Edward R. Mansell
,
Brett Roberts
,
Kimberly A. Hoogewind
,
Derek R. Stratman
,
Jorge Guerra
,
Anthony E. Reinhart
,
Christopher A. Kerr
, and
William Miller

Abstract

In 2009, advancements in NWP and computing power inspired a vision to advance hazardous weather warnings from a warn-on-detection to a warn-on-forecast paradigm. This vision would require not only the prediction of individual thunderstorms and their attributes but the likelihood of their occurrence in time and space. During the last decade, the warn-on-forecast research team at the NOAA National Severe Storms Laboratory met this challenge through the research and development of 1) an ensemble of high-resolution convection-allowing models; 2) ensemble- and variational-based assimilation of weather radar, satellite, and conventional observations; and 3) unique postprocessing and verification techniques, culminating in the experimental Warn-on-Forecast System (WoFS). Since 2017, we have directly engaged users in the testing, evaluation, and visualization of this system to ensure that WoFS guidance is usable and useful to operational forecasters at NOAA national centers and local offices responsible for forecasting severe weather, tornadoes, and flash floods across the watch-to-warning continuum. Although an experimental WoFS is now a reality, we close by discussing many of the exciting opportunities remaining, including folding this system into the Unified Forecast System, transitioning WoFS into NWS operations, and pursuing next-decade science goals for further advancing storm-scale prediction.

Significance Statement

The purpose of this research is to develop an experimental prediction system that forecasts the probability for severe weather hazards associated with individual thunderstorms up to 6 h in advance. This capability is important because some people and organizations, like those living in mobile homes, caring for patients in hospitals, or managing large outdoor events, require extended lead time to protect themselves and others from potential severe weather hazards. Our results demonstrate a prediction system that enables forecasters, for the first time, to message probabilistic hazard information associated with individual severe storms between the watch-to-warning time frame within the United States.

Open access
Ji-Hoon Ha
and
Hyesook Lee

Abstract

The optical flow technique has advantages in motion tracking and has long been employed in precipitation nowcasting to track the motion of precipitation fields using ground radar datasets. However, the performance and forecast time scale of models based on optical flow are limited. Here, we present the results of the application of the deep learning method to optical flow estimation to extend its forecast time scale and enhance the performance of nowcasting. It is shown that a deep learning model can better capture both multispatial and multitemporal motions of precipitation events compared with traditional optical flow estimation methods. The model comprises two components: 1) a regression process based on multiple optical flow algorithms, which more accurately captures multispatial features compared with a single optical flow algorithm; and 2) a U-Net-based network that trains multitemporal features of precipitation movement. We evaluated the model performance with cases of precipitation in South Korea. In particular, the regression process minimizes errors by combining multiple optical flow algorithms with a gradient descent method and outperforms other models using only a single optical flow algorithm up to a 3-h lead time. Additionally, the U-Net plays a crucial role in capturing nonlinear motion that cannot be captured by a simple advection model through traditional optical flow estimation. Consequently, we suggest that the proposed optical flow estimation method with deep learning could play a significant role in improving the performance of current operational nowcasting models, which are based on traditional optical flow methods.

Significance Statement

The purpose of this study is to improve the accuracy of short-term rainfall prediction based on optical flow methods that have been employed for operational precipitation nowcasting. By utilizing open-source libraries, such as OpenCV, and commonly applied machine learning techniques, such as multiple linear regression and U-Net networks, we propose an accessible model for enhancing prediction accuracy. We expect that the improvement in prediction accuracy will significantly improve the practical application of operational precipitation nowcasting.

Open access
Alex Alvin Cheung
,
Christopher J. Slocum
,
John A. Knaff
, and
Muhammad Naufal Razin

Abstract

Intense tropical cyclones can form secondary eyewalls (SEs) that contract toward the storm center and eventually replace the inner eyewall, a process known as an eyewall replacement cycle (ERC). However, SE formation does not guarantee an eventual ERC, and often, SEs follow differing evolutionary pathways. This study documents SE evolution and progressions observed in numerous tropical cyclones, and results in two new datasets using passive microwave imagery: a global subjectively labeled dataset of SEs and eyes and their uncertainties from 72 storms between 2016 and 2019, and a dataset of 87 SE progressions that highlights the broad convective organization preceding and following an SE formation. The results show that two primary SE pathways exist: “No Replacement,” known as “Path 1,” and “Replacement,” known as the “Classic Path.” Most interestingly, 53% of the most certain SE formations result in an eyewall replacement. The Classic Path is associated with stronger column average meridional wind, a faster poleward component of storm motion, more intense storms, weaker vertical wind shear, greater relative humidity, a larger storm wind field, and stronger cold-air advection. This study highlights that a greater number of potential SE pathways exist than previously thought. The results of this study detail several observational features of SE evolution that raise questions about the physical processes that drive SE formations. Most important, environmental conditions and storm metrics identified here provide guidance for predictors in artificial intelligence applications for future tropical cyclone SE detection algorithms.

Open access
Simon Ageet
,
Andreas H. Fink
,
Marlon Maranan
, and
Benedikt Schulz

Abstract

Despite the enormous potential of precipitation forecasts to save lives and property in Africa, low skill has limited their uptake. To assess the skill and improve the performance of the forecast, validation and postprocessing should continuously be carried out. Here, we evaluate the quality of reforecasts from the European Centre for Medium-Range Weather Forecasts over equatorial East Africa (EEA) against satellite and rain gauge observations for the period 2001–18. The 24-h rainfall accumulations are analyzed from short- to medium-range time scales. Additionally, 48- and 120-h rainfall accumulations were also assessed. The skill was assessed using an extended probabilistic climatology (EPC) derived from the observations. Results show that the reforecasts overestimate rainfall, especially during the rainy seasons and over high-altitude areas. However, there is potential of skill in the raw forecasts up to 14-day lead time. There is an improvement of up to 30% in the Brier score/continuous ranked probability score relative to EPC in most areas, especially the higher-altitude regions, decreasing with lead time. Aggregating the reforecasts enhances the skill further, likely due to a reduction in timing mismatches. However, for some regions of the study domain, the predictive performance is worse than EPC, mainly due to biases. Postprocessing the reforecasts using isotonic distributional regression considerably improves skill, increasing the number of grid points with positive Brier skill score (continuous ranked probability skill score) by an average of 81% (91%) for lead times 1–14 days ahead. Overall, the study highlights the potential of the reforecasts, the spatiotemporal variation in skill, and the benefit of postprocessing in EEA.

Open access
Stanley G. Benjamin
,
Eric P. James
,
Edward J. Szoke
,
Paul T. Schlatter
, and
John M. Brown

Abstract

The Marshall Fire on 30 December 2021 became the most destructive wildfire costwise in Colorado history as it evolved into a suburban firestorm in southeastern Boulder County, driven by strong winds and a snow-free and drought-influenced fuel state. The fire was driven by a strong downslope windstorm that maintained its intensity for nearly 11 hours. The southward movement of a large-scale jet axis across Boulder County brought a quick transition that day into a zone of upper-level descent, enhancing the midlevel inversion providing a favorable environment for an amplifying downstream mountain wave. In several aspects, this windstorm did not follow typical downslope windstorm behavior. NOAA rapidly updating numerical weather prediction guidance (including the High-Resolution Rapid Refresh) provided operationally useful forecasts of the windstorm, leading to the issuance of a High-Wind Warning (HWW) for eastern Boulder County. No Red Flag Warning was issued due to a too restrictive relative humidity criterion (already published alternatives are recommended); however, owing to the HWW, a countywide burn ban was issued for that day. Consideration of spatial (vertical and horizontal) and temporal (both valid time and initialization time) neighborhoods allows some quantification of forecast uncertainty from deterministic forecasts—important in real-time use for forecasting and public warnings of extreme events. Essentially, dimensions of the deterministic model were used to roughly estimate an ensemble forecast. These dimensions including run-to-run consistency are also important for subsequent evaluation of forecasts for small-scale features such as downslope windstorms and the tropospheric features responsible for them, similar to forecasts of deep, moist convection and related severe weather.

Significance Statement

The Front Range windstorm of 30 December 2021 combined extreme surface winds (>45 m s−1) with fire ignition resulting in an extraordinary and quickly evolving, extremely destructive wildfire–urban interface fire event. This windstorm differed from typical downslope windstorms in several aspects. We describe the observations, model guidance, and decision-making of operational forecasters for this event. In effect, an ensemble forecast was approximated by use of a frequently updated deterministic model by operational forecasters, and this combined use of temporal, spatial (horizontal and vertical), and other forecast dimensions is suggested to better estimate the possibility of such extreme events.

Open access
Galina Chirokova
,
John A. Knaff
,
Michael J. Brennan
,
Robert T. DeMaria
,
Monica Bozeman
,
Stephanie N. Stevenson
,
John L. Beven
,
Eric S. Blake
,
Alan Brammer
,
James W. Darlow
,
Mark DeMaria
,
Steven D. Miller
,
Christopher J. Slocum
,
Debra Molenar
, and
Donald W. Hillger

Abstract

Visible satellite imagery is widely used by operational weather forecast centers for tropical and extratropical cyclone analysis and marine forecasting. The absence of visible imagery at night can significantly degrade forecast capabilities, such as determining tropical cyclone center locations or tracking warm-topped convective clusters. This paper documents ProxyVis imagery, an infrared-based proxy for daytime visible imagery developed to address the lack of visible satellite imagery at night and the limitations of existing nighttime visible options. ProxyVis was trained on the VIIRS day/night band imagery at times close to the full moon using VIIRS IR channels with closely matching GOES-16/17/18, Himawari-8/9, and Meteosat-9/10/11 channels. The final operational product applies the ProxyVis algorithms to geostationary satellite data and combines daytime visible and nighttime ProxyVis data to create full-disk animated GeoProxyVis imagery. The simple versions of the ProxyVis algorithm enable its generation from earlier GOES and Meteosat satellite imagery. ProxyVis offers significant improvement over existing operational products for tracking nighttime oceanic low-level clouds. Further, it is qualitatively similar to visible imagery for a wide range of backgrounds and synoptic conditions and phenomena, enabling forecasters to use it without special training. ProxyVis was first introduced to National Hurricane Center (NHC) operations in 2018 and was found to be extremely useful by forecasters becoming part of their standard operational satellite product suite in 2019. Currently, ProxyVis implemented for GOES-16/18, Himawari-9, and Meteosat-9/10/11 is being used in operational settings and evaluated for transition to operations at multiple NWS offices and the Joint Typhoon Warning Center.

Significance Statement

This paper describes ProxyVis imagery, a new method for combining infrared channels to qualitatively mimic daytime visible imagery at nighttime. ProxyVis demonstrates that a simple linear regression can combine just a few commonly available infrared channels to develop a nighttime proxy for visible imagery that significantly improves a forecaster’s ability to track low-level oceanic clouds and circulation features at night, works for all current geostationary satellites, and is useful across a wide range of backgrounds and meteorological scenarios. Animated ProxyVis geostationary imagery has been operational at the National Hurricane Center since 2019 and is also currently being transitioned to operations at other NWS offices and the Joint Typhoon Warning Center.

Open access
Leah Cicon
,
Johannes Gemmrich
,
Benoit Pouliot
, and
Natacha Bernier

Abstract

Rogue waves are stochastic, individual ocean surface waves that are disproportionately large compared to the background sea state. They present considerable risk to mariners and offshore structures especially when encountered in large seas. Current rogue wave forecasts are based on nonlinear processes quantified by the Benjamin Feir index (BFI). However, there is increasing evidence that the BFI has limited predictive power in the real ocean and that rogue waves are largely generated by bandwidth-controlled linear superposition. Recent studies have shown that the bandwidth parameter crest–trough correlation r shows the highest univariate correlation with rogue wave probability. We corroborate this result and demonstrate that r has the highest predictive power for rogue wave probability from the analysis of open ocean and coastal buoys in the northeast Pacific. This work further demonstrates that crest–trough correlation can be forecast by a regional WAVEWATCH III wave model with moderate accuracy. This result leads to the proposal of a novel empirical rogue wave risk assessment probability forecast based on r. Semilogarithmic fits between r and rogue wave probability were applied to generate the rogue wave probability forecast. A sample rogue wave probability forecast is presented for a large storm 21–22 October 2021.

Significance Statement

Rogue waves pose a considerable threat to ships and offshore structures. The rare and unexpected nature of rogue wave makes predicting them an ongoing and challenging goal. Recent work based on an extensive dataset of waves has suggested that the wave parameter called the crest–trough correlation shows the highest correlation with rogue wave probability. Our work demonstrates that crest–trough correlation can be reasonably well forecast by standard wave models. This suggests that current operational wave models can support rogue wave prediction models based on crest–trough correlation for improved rogue wave risk evaluation.

Open access