Browse

You are looking at 1 - 10 of 10 items for :

  • RELAMPAGO-CACTI: High Impact Weather in Subtropical South America x
  • Refine by Access: Content accessible to me x
Clear All
Kristen L. Rasmussen, Melissa A. Burt, Angela Rowe, Rebecca Haacker, Deanna Hence, Lorena Medina Luna, Stephen W. Nesbitt, and Julie Maertens

Abstract

This article provides an overview of the Advanced Study Institute: Field Studies of Convection in Argentina (ASI-FSCA) program, a 3-week dynamic and collaborative hands-on experience that allowed 16 highly motivated and diverse graduate students from the United States to participate in the 2018–19 Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This program is unique as it represents the first effort to integrate an intensive Advanced Study Institute with a field campaign in atmospheric science. ASI-FSCA activities and successful program outcomes for five key elements are described: 1) intensive field research with field campaign instrumentation platforms; 2) recruitment of diverse graduate students who would not otherwise have opportunities to participate in intensive field research; 3) tailored curriculum focused on scientific understanding of cloud and mesoscale processes and professional/academic development topics; 4) outreach to local K–12 schools and the general public; and 5) building a collaborative international research network to promote weather and climate research. These five elements served to increase motivation and improve confidence and self-efficacy of students to participate in scientific research and field work with goals of increasing retention and a sense of belonging in STEM graduate programs and advancing the careers of students from underrepresented groups as evidenced by a formal program evaluation effort. Given the success of the ASI-FSCA program, our team strongly recommends considering this model for expanding the opportunities for a broader and more diverse student community to participate in dynamic and intensive field work in atmospheric science.

Full access
James N. Marquis, Adam C. Varble, Paul Robinson, T. Connor Nelson, and Katja Friedrich

Abstract

Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of (i) the mesoscale and boundary layer flow, and (ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary, or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3–5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1–3 km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment.

Open access
Stephen W. Nesbitt, Paola V. Salio, Eldo Ávila, Phillip Bitzer, Lawrence Carey, V. Chandrasekar, Wiebke Deierling, Francina Dominguez, Maria Eugenia Dillon, C. Marcelo Garcia, David Gochis, Steven Goodman, Deanna A. Hence, Karen A. Kosiba, Matthew R. Kumjian, Timothy Lang, Lorena Medina Luna, James Marquis, Robert Marshall, Lynn A. McMurdie, Ernani de Lima Nascimento, Kristen L. Rasmussen, Rita Roberts, Angela K. Rowe, Juan José Ruiz, Eliah F.M.T. São Sabbas, A. Celeste Saulo, Russ S. Schumacher, Yanina Garcia Skabar, Luiz Augusto Toledo Machado, Robert J. Trapp, Adam C. Varble, James Wilson, Joshua Wurman, Edward J. Zipser, Ivan Arias, Hernán Bechis, and Maxwell A. Grover

Abstract

This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in the Córdoba and Mendoza provinces in Argentina and western Rio Grande do Sul State in Brazil in 2018–19 that involved more than 200 scientists and students from the United States, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates, and other unusual lightning phenomena, but few tornadoes. The five distinct scientific foci of RELAMPAGO—convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification—are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multinational education, public outreach, and social media data gathering associated with the campaign, is summarized.

Full access
Adam C. Varble, Stephen W. Nesbitt, Paola Salio, Joseph C. Hardin, Nitin Bharadwaj, Paloma Borque, Paul J. DeMott, Zhe Feng, Thomas C. J. Hill, James N. Marquis, Alyssa Matthews, Fan Mei, Rusen Öktem, Vagner Castro, Lexie Goldberger, Alexis Hunzinger, Kevin R. Barry, Sonia M. Kreidenweis, Greg M. McFarquhar, Lynn A. McMurdie, Mikhail Pekour, Heath Powers, David M. Romps, Celeste Saulo, Beat Schmid, Jason M. Tomlinson, Susan C. van den Heever, Alla Zelenyuk, Zhixiao Zhang, and Edward J. Zipser

Abstract

The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.

Full access
Jake P. Mulholland, Stephen W. Nesbitt, Robert J. Trapp, and John M. Peters

Abstract

Orographic deep convection (DC) initiation and rapid evolution from supercells to mesoscale convective systems (MCSs) are common near the Sierras de Córdoba, Argentina, which was the focal point of the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This study used an idealized numerical model with elongated north–south terrain similar to that of the Sierras de Córdoba to address how variations in terrain height affected the environment and convective morphology. Simulations used a thermodynamic profile from a RELAMPAGO event that featured both supercell and MCS storm modes. Results revealed that DC initiated earlier in simulations with higher terrain, owing both to stronger upslope flows and standing mountain waves. All simulations resulted in supercell formation, with higher-terrain supercells initiating closer to the terrain peak and moving slower off the terrain. Higher-terrain simulations displayed increases in both low-level and deep-layer wind shear along the eastern slopes of the terrain that were related to the enhanced upslope flows, supporting stronger and wider supercell updrafts/downdrafts and a wider swath of heavy rainfall. Deeper and stronger cold pools from these wider and stronger higher-terrain supercells led to surging outflow that reduced convective available potential energy accessible to deep convective updrafts, resulting in quicker supercell demise off the terrain. Lower-terrain supercells moved quickly off the terrain, merged with weaker convective cells, and resulted in a quasi-organized MCS. These results demonstrate that terrain-induced flow modification may lead to substantial local variations in convective morphology.

Free access
Hernán Bechis, Paola Salio, and Juan José Ruiz

Abstract

Drylines have been identified as relevant synoptic-scale phenomena that frequently occur in several regions around the world. Despite previous works and the experience of local forecasters that recognizes the occurrence of drylines in Argentina and suggests its possible association with convection initiation, knowledge about the mechanisms leading to the genesis of these features is poor. This paper presents the first synoptic climatology of these drylines as well as a first approach to the understanding of the processes leading to their formation. The climatology is based on an automated algorithm for dryline identification applied to reanalysis data. We found that drylines are more frequent between the northern Patagonia plateau and the central Argentinean plains. A composite analysis is performed to analyze the processes leading to the formation of synoptic-scale drylines within this region. It was found that these drylines form in the confluence between a warm and moist air mass driven by a northwesterly flow and drier air flowing east over the northern Patagonia plateau. The dry air originates on top of the Pacific maritime boundary layer and experiences lee subsidence after crossing the Andes range creating an area of dry and warm air that is advected to the east by the westerly synoptic-scale flow, and transported downward during the day due to strong boundary layer turbulence. At the same time, surface heating over the plateau leads to substantial warming of the originally colder dry air behind the dryline, thus reversing the horizontal temperature gradient across the dryline.

Free access
Jake P. Mulholland, Stephen W. Nesbitt, and Robert J. Trapp

Abstract

Satellite- and ground-based radar observations have shown that the northern half of Argentina, South America, is a region susceptible to rapid upscale growth of deep moist convection into larger organized mesoscale convective systems (MCSs). In particular, the complex terrain of the Sierras de Córdoba is hypothesized to be vital to this upscale-growth process. A canonical orographic supercell-to-MCS transition case study was analyzed to determine the influence that complex terrain had on processes governing upscale convective growth. High-resolution numerical modeling experiments were conducted in which the terrain height of the Sierras de Córdoba was systematically modified by raising or lowering the elevation of terrain above 1000 m. The alteration of the terrain lead to both direct and indirect effects on storm morphology. A direct effect included terrain blocking of cold pools, whereas indirect effects included terrain-induced variations in pertinent storm environmental parameters (e.g., vertical wind shear, convective available potential energy). When the terrain was raised, low-level and deep-layer vertical wind shear increased, mixed-layer convective available potential energy decreased, deep moist convection initiated earlier, and cold pools were blocked and generally became stronger and deeper. The reverse occurred when the terrain was lowered, resulting in a weaker supercell that did not grow upscale into an MCS. The control simulation supercell displayed the deepest cold pool and correspondingly fastest transition from supercell to MCS, potentially revealing that the unique terrain configuration of the Sierras de Córdoba was supportive of the observed rapid upscale convective growth of this orographic supercell.

Free access
Zachary S. Bruick, Kristen L. Rasmussen, and Daniel J. Cecil

Abstract

Hailstorms in subtropical South America are known to be some of the most frequent anywhere in the world, causing significant damage to the local agricultural economy every year. Convection in this region tends to be orographically forced, with moisture supplied from the Amazon rain forest by the South American low-level jet. Previous climatologies of hailstorms in this region have been limited to localized and sparse observational networks. Because of the lack of sufficient ground-based radar coverage, objective radar-derived hail climatologies have also not been produced for this region. As a result, this study uses a 16-yr dataset of TRMM Precipitation Radar and Microwave Imager observations to identify possible hailstorms remotely, using 37-GHz brightness temperature as a hail proxy. By combining satellite instruments and ERA-Interim reanalysis data, this study produces the first objective study of hailstorms in this region. Hailstorms in subtropical South America have an extended diurnal cycle, often occurring in the overnight hours. In addition, they tend to be multicellular in nature, rather than discrete. High-probability hailstorms (≥50% probability of containing hail) tend to be deeper by 1–2 km and horizontally larger by greater than 15 000 km2 than storms having a low probability of containing hail (<25% probability of containing hail). Hailstorms are supported synoptically by strong upper- and lower-level jets, anomalously warm and moist low levels, and enhanced instability. The findings of this study will support the forecasting of these severe storms and mitigation of their damage within this region.

Free access
Zachary S. Bruick, Kristen L. Rasmussen, Angela K. Rowe, and Lynn A. McMurdie

Abstract

El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengthening of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO.

Full access
Jake P. Mulholland, Stephen W. Nesbitt, Robert J. Trapp, Kristen L. Rasmussen, and Paola V. Salio

Abstract

Satellite observations have revealed that some of the world’s most intense deep convective storms occur near the Sierras de Córdoba, Argentina, South America. A C-band, dual-polarization Doppler weather radar recently installed in the city of Córdoba in 2015 is now providing a high-resolution radar perspective of this intense convection. Radar data from two austral spring and summer seasons (2015–17) are used to document the convective life cycle, while reanalysis data are utilized to construct storm environments across this region. Most of the storms in the region are multicellular and initiate most frequently during the early afternoon and late evening hours near and just east of the Sierras de Córdoba. Annually, the peak occurrence of these storms is during the austral summer months of December, January, and February. These Córdoba radar-based statistics are shown to be comparable to statistics derived from Tropical Rainfall Measuring Mission Precipitation Radar data. While generally similar to storm environments in the United States, storm environments in central Argentina tend to be characterized by larger CAPE and weaker low-level vertical wind shear. One of the more intriguing results is the relatively fast transition from first storms to larger mesoscale convective systems, compared with locations in the central United States.

Full access