Browse

You are looking at 1 - 10 of 44 items for :

  • Global Precipitation Measurement (GPM): Science and Applications x
  • Refine by Access: Content accessible to me x
Clear All
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi

Abstract

This paper describes a new Passive Microwave Empirical Cold Surface Classification Algorithm (PESCA) developed for snow-cover detection and characterization by using passive microwave satellite measurements. The main goal of PESCA is to support the retrieval of falling snow, since several studies have highlighted the influence of snow-cover radiative properties on the falling-snow passive microwave signature. The developed method is based on the exploitation of the lower-frequency channels (<90 GHz), common to most microwave radiometers. The method applied to the conically scanning Global Precipitation Measurement (GPM) Microwave Imager (GMI) and the cross-track-scanning Advanced Technology Microwave Sounder (ATMS) is described in this paper. PESCA is based on a decision tree developed using an empirical method and verified using the AutoSnow product built from satellite measurements. The algorithm performance appears to be robust both for sensors in dry conditions (total precipitable water < 10 mm) and for mean surface elevation < 2500 m, independent of the cloud cover. The algorithm shows very good performance for cold temperatures (2-m temperature below 270 K) with a rapid decrease of the detection capabilities between 270 and 280 K, where 280 K is assumed as the maximum temperature limit for PESCA (overall detection statistics: probability of detection is 0.98 for ATMS and 0.92 for GMI, false alarm ratio is 0.01 for ATMS and 0.08 for GMI, and Heidke skill score is 0.72 for ATMS and 0.69 for GMI). Some inconsistencies found between the snow categories identified with the two radiometers are related to their different viewing geometries, spatial resolution, and temporal sampling. The spectral signatures of the different snow classes also appear to be different at high frequency (>90 GHz), indicating potential impact for snowfall retrieval. This method can be applied to other conically scanning and cross-track-scanning radiometers, including the future operational EUMETSAT Polar System Second Generation (EPS-SG) mission microwave radiometers.

Open access
Kamil Mroz, Mario Montopoli, Alessandro Battaglia, Giulia Panegrossi, Pierre Kirstetter, and Luca Baldini

Abstract

Surface snowfall rate estimates from the Global Precipitation Measurement (GPM) mission’s Core Observatory sensors and the CloudSat radar are compared to those from the Multi-Radar Multi-Sensor (MRMS) radar composite product over the continental United States during the period from November 2014 to September 2020. The analysis includes the Dual-Frequency Precipitation Radar (DPR) retrieval and its single-frequency counterparts, the GPM Combined Radar Radiometer Algorithm (CORRA), the CloudSat Snow Profile product (2C-SNOW-PROFILE), and two passive microwave retrievals, i.e., the Goddard Profiling algorithm (GPROF) and the Snow Retrieval Algorithm for GMI (SLALOM). The 2C-SNOW retrieval has the highest Heidke skill score (HSS) for detecting snowfall among the products analyzed. SLALOM ranks second; it outperforms GPROF and the other GPM algorithms, all detecting only 30% of the snow events. Since SLALOM is trained with 2C-SNOW, it suggests that the optimal use of the information content in the GMI observations critically depends on the precipitation training dataset. All the retrievals underestimate snowfall rates by a factor of 2 compared to MRMS. Large discrepancies (RMSE of 0.7–1.5 mm h−1) between spaceborne and ground-based snowfall rate estimates are attributed to the complexity of the ice scattering properties and to the limitations of the remote sensing systems: the DPR instrument has low sensitivity, while the radiometric measurements are affected by the confounding effects of the background surface emissivity and of the emission of supercooled liquid droplet layers.

Open access
Sybille Y. Schoger, Dmitri Moisseev, Annakaisa von Lerber, Susanne Crewell, and Kerstin Ebell

Abstract

Two power-law relations linking equivalent radar reflectivity factor Ze and snowfall rate S are derived for a K-band Micro Rain Radar (MRR) and for a W-band cloud radar. For the development of these Ze–S relationships, a dataset of calculated and measured variables is used. Surface-based video-disdrometer measurements were collected during snowfall events over five winters at the high-latitude site in Hyytiälä, Finland. The data from 2014 to 2018 include particle size distributions (PSD) and their fall velocities, from which snowflake masses were derived. The K- and W-band Ze values are computed using these surface-based observations and snowflake scattering properties as provided by T-matrix and single-particle scattering tables, respectively. The uncertainty analysis shows that the K-band snowfall-rate estimation is significantly improved by including the intercept parameter N0 of the PSD calculated from concurrent disdrometer measurements. If N0 is used to adjust the prefactor of the Ze–S relationship, the RMSE of the snowfall-rate estimate can be reduced from 0.37 to around 0.11 mm h−1. For W-band radar, a Ze–S relationship with constant parameters for all available snow events shows a similar uncertainty when compared with the method that includes the PSD intercept parameter. To demonstrate the performance of the proposed Ze–S relationships, they are applied to measurements of the MRR and the W-band microwave radar for Arctic clouds at the Arctic research base operated by the German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) and the French Polar Institute Paul Emile Victor (IPEV) (AWIPEV) in Ny-Ålesund, Svalbard, Norway. The resulting snowfall-rate estimates show good agreement with in situ snowfall observations while other Ze–S relationships from literature reveal larger differences.

Open access
Clément Guilloteau and Efi Foufoula-Georgiou

Abstract

The quantitative estimation of precipitation from orbiting passive microwave imagers has been performed for more than 30 years. The development of retrieval methods consists of establishing physical or statistical relationships between the brightness temperatures (TBs) measured at frequencies between 5 and 200 GHz and precipitation. Until now, these relationships have essentially been established at the “pixel” level, associating the average precipitation rate inside a predefined area (the pixel) to the collocated multispectral radiometric measurement. This approach considers each pixel as an independent realization of a process and ignores the fact that precipitation is a dynamic variable with rich multiscale spatial and temporal organization. Here we propose to look beyond the pixel values of the TBs and show that useful information for precipitation retrieval can be derived from the variations of the observed TBs in a spatial neighborhood around the pixel of interest. We also show that considering neighboring information allows us to better handle the complex observation geometry of conical-scanning microwave imagers, involving frequency-dependent beamwidths, overlapping fields of view, and large Earth incidence angles. Using spatial convolution filters, we compute “nonlocal” radiometric parameters sensitive to spatial patterns and scale-dependent structures of the TB fields, which are the “geometric signatures” of specific precipitation structures such as convective cells. We demonstrate that using nonlocal radiometric parameters to enrich the spectral information associated to each pixel allows for reduced retrieval uncertainty (reduction of 6%–11% of the mean absolute retrieval error) in a simple k-nearest neighbors retrieval scheme.

Open access
Md. Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, and Emmanouil N. Anagnostou

Abstract

This study evaluates a machine learning–based precipitation ensemble technique (MLPET) over three mountainous tropical regions. The technique, based on quantile regression forests, integrates global satellite precipitation datasets from CMORPH, PERSIANN, GSMaP (V6), and 3B42 (V7) and an atmospheric reanalysis precipitation product (EI_GPCC) with daily soil moisture, specific humidity, and terrain elevation datasets. The complex terrain study areas include the Peruvian and Colombian Andes in South America and the Blue Nile in East Africa. Evaluation is performed at a daily time scale and 0.25° spatial resolution based on 13 years (2000–12) of reference rainfall data derived from dense in situ rain gauge networks. The technique is evaluated using K-fold, separately in each region, and leave-one-region-out validation experiments. Comparison of MLPET with the individual satellite and reanalysis precipitation datasets used for the blending and the recent Multi-Source Weighted-Ensemble Precipitation (MSWEP) global precipitation product exhibited improved systematic and random error statistics for all regions. In addition, it is shown that observations are encapsulated well within the ensemble envelope generated by the blending technique.

Full access
Yonghe Liu, Jinming Feng, Zongliang Yang, Yonghong Hu, and Jianlin Li

Abstract

Few statistical downscaling applications have provided gridded products that can provide downscaled values for a no-gauge area as is done by dynamical downscaling. In this study, a gridded statistical downscaling scheme is presented to downscale summer precipitation to a dense grid that covers North China. The main innovation of this scheme is interpolating the parameters of single-station models to this dense grid and assigning optimal predictor values according to an interpolated predictand–predictor distance function. This method can produce spatial dependence (spatial autocorrelation) and transmit the spatial heterogeneity of predictor values from the large-scale predictors to the downscaled outputs. Such gridded output at no-gauge stations shows performances comparable to that at the gauged stations. The area mean precipitation of the downscaled results is comparable to other products. The main value of the downscaling scheme is that it can obtain reasonable outputs for no-gauge stations.

Full access
Sarah D. Bang and Daniel J. Cecil

Abstract

Large hail is a primary contributor to damages and loss around the world, in both agriculture and infrastructure. The sensitivity of passive microwave radiometer measurements to scattering by hail led to the development of proxies for severe hail, most of which use brightness temperature thresholds from 37-GHz and higher-frequency microwave channels on board weather satellites in low-Earth orbit. Using 16+ years of data from the Tropical Rainfall Measuring Mission (TRMM; 36°S–36°N), we pair TRMM brightness temperature–derived precipitation features with surface hail reports in the United States to train a hail retrieval on passive microwave data from the 10-, 19-, 37-, and 85-GHz channels based on probability curves fit to the microwave data. We then apply this hail retrieval to features in the Global Precipitation Measurement (GPM) domain (from 69°S to 69°N) to develop a nearly global passive microwave–based climatology of hail. The extended domain of the GPM satellite into higher latitudes requires filtering out features that we believe are over icy and snowy surface regimes. We also normalize brightness temperature depression by tropopause height in an effort to account for differences in storm depth between the tropics and higher latitudes. Our results show the highest hail frequencies in the region of northern Argentina through Paraguay, Uruguay, and southern Brazil; the central United States; and a swath of Africa just south of the Sahel. Smaller hot spots include Pakistan, eastern India, and Bangladesh. A notable difference between these results and many prior satellite-based studies is that central Africa, while still active in our climatology, does not rival the aforementioned regions in retrieved hailstorm frequency.

Open access
Xiang Ni, Chuntao Liu, and Edward Zipser

Abstract

Using three years of observations from the Dual-Frequency Precipitation Radar (DPR) aboard the Global Precipitation Measurement (GPM) Core Observatory, properties of the cores of deep convection are examined. First, deep convective systems are selected, defined as GPM precipitation features with maximum 20-dBZ echo-top heights above 10 km. The cores of deep convection are described by the profiles of Ku- and Ka-band radar reflectivity at the location of the highest echo top in each deep convective system. Then the dual-frequency ratio (DFR) profile is derived by subtracting Ka-band from Ku-band radar reflectivity. It is found that values of DFR are larger over land than over ocean in general near the top of the convection, which is consistent with larger ice particles in stronger updrafts in continental convection. The magnitude of DFR at 12 km is positively correlated with the convection intensity indicated by 20- and 30-dBZ echo tops. The microphysical properties including volume-weighted mean diameter, ice water content, and total ice particle number concentration are derived using a simple lookup table approach. Under the same particle size distribution assumption, the cores of deep convection over land have larger ice particle size, higher ice water content, and lower particle concentration than those over ocean at levels above 10 km, but with some distinct regional variations.

Full access
Kenneth D. Leppert II and Daniel J. Cecil

Abstract

Global Precipitation Measurement (GPM) Microwave Imager (GMI) brightness temperatures (BTs) were simulated over a case of severe convection in Texas using ground-based S-band radar and the Atmospheric Radiative Transfer Simulator. The median particle diameter D o of a normalized gamma distribution was varied for different hydrometeor types under the constraint of fixed radar reflectivity to better understand how simulated GMI BTs respond to changing particle size distribution parameters. In addition, simulations were conducted to assess how low BTs may be expected to reach from realistic (although extreme) particle sizes or concentrations. Results indicate that increasing D o for cloud ice, graupel, and/or hail leads to warmer BTs (i.e., weaker scattering signature) at various frequencies. Channels at 166.0 and 183.31 ± 7 GHz are most sensitive to changing D o of cloud ice, channels at ≥89.0 GHz are most sensitive to changing D o of graupel, and at 18.7 and 36.5 GHz they show the greatest sensitivity to hail D o. Simulations contrasting BTs above high concentrations of small (0.5-cm diameter) and low concentrations of large (20-cm diameter) hailstones distributed evenly across a satellite pixel showed much greater scattering using the higher concentration of smaller hailstones with BTs as low as ~110, ~33, ~22, ~46, ~100, and ~106 K at 10.65, 18.7, 36.5, 89.0, 166.0, and 183.31 ± 7 GHz, respectively. These results suggest that number concentration is more important for scattering than particle size given a constant S-band radar reflectivity.

Full access
Paloma Borque, Kirstin J. Harnos, Stephen W. Nesbitt, and Greg M. McFarquhar

Abstract

Satellite retrieval algorithms and model microphysical parameterizations require guidance from observations to improve the representation of ice-phase microphysical quantities and processes. Here, a parameterization for ice-phase particle size distributions (PSDs) is developed using in situ measurements of cloud microphysical properties collected during the Global Precipitation Measurement (GPM) Cold-Season Precipitation Experiment (GCPEx). This parameterization takes advantage of the relation between the gamma-shape parameter μ and the mass-weighted mean diameter D m of the ice-phase PSD sampled during GCPEx. The retrieval of effective reflectivity Z e and ice water content (IWC) from the reconstructed PSD using the μD m relationship was tested with independent measurements of Z e and IWC and overall leads to a mean error of 8% in both variables. This represents an improvement when compared with errors using the Field et al. parameterization of 10% in IWC and 37% in Z e. Current radar precipitation retrieval algorithms from GPM assume that the PSD follows a gamma distribution with μ = 3. This assumption leads to a mean overestimation of 5% in the retrieved Z e, whereas applying the μD m relationship found here reduces this bias to an overestimation of less than 1%. Proper selection of the a and b coefficients in the mass–dimension relationship is also of crucial importance for retrievals. An inappropriate selection of a and b, even from values observed in previous studies in similar environments and cloud types, can lead to more than 100% bias in IWC and Z e for the ice-phase particles analyzed here.

Full access