Browse

You are looking at 1 - 5 of 5 items for :

  • The Olympic Mountains Experiment (OLYMPEX) x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: Content accessible to me x
Clear All
Ousmane O. Sy
,
Simone Tanelli
,
Stephen L. Durden
,
Andrew Heymsfield
,
Aaron Bansemer
,
Kwo-Sen Kuo
,
Noppasin Niamsuwan
,
Robert M. Beauchamp
,
V. Chandrasekar
,
Manuel Vega
, and
Michael P. Johnson

Abstract

This article illustrates how multifrequency radar observations can refine the mass–size parameterization of frozen hydrometeors in scattering models and improve the correlation between the radar observations and in situ measurements of microphysical properties of ice and snow. The data presented in this article were collected during the GPM Cold Season Precipitation Experiment (GCPEx) (2012) and Olympic Mountain Experiment (OLYMPEx) (2015) field campaigns, where the true mass–size relationship was not measured. Starting from size and shape distributions of ice particles measured in situ, scattering models are used to simulate an ensemble of reflectivity factors for various assumed mass–size parameterizations (MSP) of the power-law type. This ensemble is then collocated to airborne and ground-based radar observations, and the MSPs are refined by retaining only those that reproduce the radar observations to a prescribed level of accuracy. A versatile “retrieval dashboard” is built to jointly analyze the optimal MSPs and associated retrievals. The analysis shows that the optimality of an MSP depends on the physical assumptions made in the scattering simulators. This work confirms also the existence of a relationship between parameters of the optimal MSPs. Through the MSP optimization, the retrievals of ice water content M and mean diameter D m seem robust to the change in meteorological regime (between GCPEx and OLYMPEx); whereas the retrieval of the diameter spread S m seems more campaign dependent.

Free access
Robert Conrick
,
Joseph P. Zagrodnik
, and
Clifford F. Mass

Abstract

Radar retrievals of drop size distribution (DSD) parameters are developed and evaluated over the mountainous Olympic Peninsula of Washington State. The observations used to develop retrievals were collected during the 2015/16 Olympic Mountain Experiment (OLYMPEX) and included the NASA S-band dual-polarimetric (NPOL) radar and a collection of second-generation Particle Size and Velocity (PARSIVEL2) disdrometers over the windward slopes of the barrier. Nonlinear and random forest regressions are applied to the PARSIVEL2 data to develop retrievals for median volume diameter, liquid water content, and rain rate. Improvement in DSD retrieval accuracy, defined by the mean error of the retrieval relative to PARSIVEL2 observations, was achieved when using the random forest model when compared with nonlinear regression. Evaluation of disdrometer observations and the retrievals from NPOL indicate that the radar retrievals can accurately reproduce observed DSDs in this region, including the common wintertime regime of small but numerous raindrops that is important there. NPOL retrievals during the OLYMPEX period are further evaluated using two-dimensional video disdrometers (2DVD) and vertically pointing Micro Rain Radars. Results indicate that radar retrievals using random forests may be skillful in capturing DSD characteristics in the lowest portions of the atmosphere.

Free access
Minda Le
and
V. Chandrasekar

Abstract

Extensive evaluations have been performed on the dual-frequency classification module in the Global Precipitation Mission (GPM) Dual-Frequency Precipitation Radar (DPR) level-2 algorithm. Both rain type classification and melting-layer detection continue to show promising results in the validations. Surface snowfall identification is a feature newly added in the classification module to the recently released version to provide a surface snowfall flag for each qualified vertical profile. This algorithm is developed upon vertical features of Ku- and Ka-band reflectivity and dual-frequency ratio from DPR. In this paper, we validate this surface snowfall identification algorithm with ground radars including NEXRAD, NASA Polarimetric Radar (NPOL), and CSU–CHILL radar during concurrent precipitation events and GPM validation campaign Olympic Mountain Experiment (OLYMPEX). Other ground truth such as Precipitation Imaging Package (PIP) and ground report is also included in the validation. Based on 16 validation cases in the years 2014–18, the average match ratio between surface snowfall flag from space radar and ground radar is around 87.8%. Promising agreements are achieved with different validation sources. Algorithm limitation and potential improvement are discussed.

Full access
Bin Pei
and
Firat Y. Testik

Abstract

In this study a new radar rainfall estimation algorithm—rainfall estimation using simulated raindrop size distributions (RESID)—was developed. This algorithm development was based upon the recent finding that measured and simulated raindrop size distributions (DSDs) with matching triplets of dual-polarization radar observables (i.e., horizontal reflectivity, differential reflectivity, and specific differential phase) produce similar rain rates. The RESID algorithm utilizes a large database of simulated gamma DSDs, theoretical rain rates calculated from the simulated DSDs, the corresponding dual-polarization radar observables, and a set of cost functions. The cost functions were developed using both the measured and simulated dual-polarization radar observables. For a given triplet of measured radar observables, RESID chooses a suitable cost function from the set and then identifies nine of the simulated DSDs from the database that minimize the value of the chosen cost function. The rain rate associated with the given radar observable triplet is estimated by averaging the calculated theoretical rain rates for the identified simulated DSDs. This algorithm is designed to reduce the effects of radar measurement noise on rain-rate retrievals and is not subject to the regression uncertainty introduced in the conventional development of the rain-rate estimators. The rainfall estimation capability of our new algorithm was demonstrated by comparing its performance with two benchmark algorithms through the use of rain gauge measurements from the Midlatitude Continental Convective Clouds Experiment (MC3E) and the Olympic Mountains Experiment (OLYMPEx). This comparison showed favorable performance of the new algorithm for the rainfall events observed during the field campaigns.

Open access
Stephanie M. Wingo
,
Walter A. Petersen
,
Patrick N. Gatlin
,
Charanjit S. Pabla
,
David A. Marks
, and
David B. Wolff

Abstract

Researchers now have the benefit of an unprecedented suite of space- and ground-based sensors that provide multidimensional and multiparameter precipitation information. Motivated by NASA’s Global Precipitation Measurement (GPM) mission and ground validation objectives, the System for Integrating Multiplatform Data to Build the Atmospheric Column (SIMBA) has been developed as a unique multisensor precipitation data fusion tool to unify field observations recorded in a variety of formats and coordinate systems into a common reference frame. Through platform-specific modules, SIMBA processes data from native coordinates and resolutions only to the extent required to set them into a user-defined three-dimensional grid. At present, the system supports several ground-based scanning research radars, NWS NEXRAD radars, profiling Micro Rain Radars (MRRs), multiple disdrometers and rain gauges, soundings, the GPM Microwave Imager and Dual-Frequency Precipitation Radar on board the Core Observatory satellite, and Multi-Radar Multi-Sensor system quantitative precipitation estimates. SIMBA generates a new atmospheric column data product that contains a concomitant set of all available data from the supported platforms within the user-specified grid defining the column area in the versatile netCDF format. Key parameters for each data source are preserved as attributes. SIMBA provides a streamlined framework for initial research tasks, facilitating more efficient precipitation science. We demonstrate the utility of SIMBA for investigations, such as assessing spatial precipitation variability at subpixel scales and appraising satellite sensor algorithm representation of vertical precipitation structure for GPM Core Observatory overpass cases collected in the NASA Wallops Precipitation Science Research Facility and the GPM Olympic Mountain Experiment (OLYMPEX) ground validation field campaign in Washington State.

Full access