Browse

You are looking at 1 - 10 of 21 items for :

  • Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) x
  • Monthly Weather Review x
  • Refine by Access: Content accessible to me x
Clear All

The Extratropical Transition of Tropical Cyclones. Part II: Interaction with the Midlatitude Flow, Downstream Impacts, and Implications for Predictability

Julia H. Keller
,
Christian M. Grams
,
Michael Riemer
,
Heather M. Archambault
,
Lance Bosart
,
James D. Doyle
,
Jenni L. Evans
,
Thomas J. Galarneau Jr.
,
Kyle Griffin
,
Patrick A. Harr
,
Naoko Kitabatake
,
Ron McTaggart-Cowan
,
Florian Pantillon
,
Julian F. Quinting
,
Carolyn A. Reynolds
,
Elizabeth A. Ritchie
,
Ryan D. Torn
, and
Fuqing Zhang

Abstract

The extratropical transition (ET) of tropical cyclones often has an important impact on the nature and predictability of the midlatitude flow. This review synthesizes the current understanding of the dynamical and physical processes that govern this impact and highlights the relationship of downstream development during ET to high-impact weather, with a focus on downstream regions. It updates a previous review from 2003 and identifies new and emerging challenges and future research needs. First, the mechanisms through which the transitioning cyclone impacts the midlatitude flow in its immediate vicinity are discussed. This “direct impact” manifests in the formation of a jet streak and the amplification of a ridge directly downstream of the cyclone. This initial flow modification triggers or amplifies a midlatitude Rossby wave packet, which disperses the impact of ET into downstream regions (downstream impact) and may contribute to the formation of high-impact weather. Details are provided concerning the impact of ET on forecast uncertainty in downstream regions and on the impact of observations on forecast skill. The sources and characteristics of the following key features and processes that may determine the manifestation of the impact of ET on the midlatitude flow are discussed: the upper-tropospheric divergent outflow, mainly associated with latent heat release in the troposphere below, and the phasing between the transitioning cyclone and the midlatitude wave pattern. Improving the representation of diabatic processes during ET in models and a climatological assessment of the ET’s impact on downstream high-impact weather are examples for future research directions.

Open access
Hilke S. Lentink
,
Christian M. Grams
,
Michael Riemer
, and
Sarah C. Jones

Abstract

Extratropical transition (ET) can cause high-impact weather in midlatitude regions and therefore constitutes an ongoing threat at the end of a tropical cyclone’s (TC) life cycle. Most of the ET events occur over the ocean, but some TCs recurve and undergo ET along coastal regions; however, the latter category is less investigated. Typhoon Sinlaku (2008), for example, underwent ET along the southern coast of Japan. It was one of the typhoons that occurred during the T-PARC field campaign, providing unprecedented high-resolution observational data. Sinlaku is therefore an excellent case to investigate the impact of a coastal region, and in particular orography, on the evolution of ET. Here, observations from T-PARC are employed to verify high-resolution simulations of Sinlaku. In addition, a sensitivity simulation is performed with the orography of Japan removed. The presence of orography causes blocking of low-level, cool midlatitude air north of Japan. Without this inflow of cool air, ET is delayed. Only once Sinlaku moves away from the orographic barrier does the cool, dry environmental air penetrate equatorward, and ET continues. On a local scale, evaporatively cooled air from below Sinlaku’s asymmetric precipitation field could be advected toward the cyclone center when orography was favorable for it. Changes in the vortex structure, as known from mature TCs interacting with orography, were only minor due to the high translation speed during ET. This study corroborates that orography can impact ET by modulating both the synoptic-scale environmental conditions and the mesoscale cyclone structure during ET.

Full access
Volkmar Wirth
,
Michael Riemer
,
Edmund K. M. Chang
, and
Olivia Martius

Abstract

Rossby wave packets (RWPs) are Rossby waves for which the amplitude has a local maximum and decays to smaller values at larger distances. This review focuses on upper-tropospheric transient RWPs along the midlatitude jet stream. Their central characteristic is the propagation in the zonal direction as well as the transfer of wave energy from one individual trough or ridge to its downstream neighbor, a process called “downstream development.” These RWPs sometimes act as long-range precursors to extreme weather and presumably have an influence on the predictability of midlatitude weather systems. The paper reviews research progress in this area with an emphasis on developments during the last 15 years. The current state of knowledge is summarized including a discussion of the RWP life cycle as well as Rossby waveguides. Recent progress in the dynamical understanding of RWPs has been based, in part, on the development of diagnostic methods. These methods include algorithms to identify and track RWPs in an automated manner, which can be used to extract the climatological properties of RWPs. RWP dynamics have traditionally been investigated using the eddy kinetic energy framework; alternative approaches based on potential vorticity and wave activity fluxes are discussed and put into perspective with the more traditional approach. The different diagnostics are compared to each other and the strengths and weaknesses of individual methods are highlighted. A recurrent theme is the role of diabatic processes, which can be a source for forecast errors. Finally, the paper points to important open research questions and suggests avenues for future research.

Open access
Marlene Baumgart
,
Michael Riemer
,
Volkmar Wirth
,
Franziska Teubler
, and
Simon T. K. Lang

Abstract

Synoptic-scale error growth near the tropopause is investigated from a process-based perspective. Following previous work, a potential vorticity (PV) error tendency equation is derived and partitioned into individual contributions to yield insight into the processes governing error growth near the tropopause. Importantly, we focus here on the further amplification of preexisting errors and not on the origin of errors. The individual contributions to error growth are quantified in a case study of a 6-day forecast. In this case, localized mesoscale error maxima have formed by forecast day 2. These maxima organize into a wavelike pattern and reach the Rossby wave scale around forecast day 6. Error growth occurs most prominently within the Atlantic and Pacific Rossby wave patterns. In our PV framework, the error growth is dominated by the contribution of upper-level, near-tropopause PV anomalies (near-tropopause dynamics). Significant contributions from upper-tropospheric divergent flow (prominently associated with latent heat release below) and lower-tropospheric anomalies [tropospheric-deep (i.e., baroclinic) interaction] are associated with a misrepresentation of the surface cyclone development in the forecast. These contributions are, in general, of smaller importance to error growth than near-tropopause dynamics. This result indicates that the mesoscale errors generated near the tropopause do not primarily project on differences in the subsequent baroclinic growth, but instead directly project on the tropopause evolution and amplify because of differences in the nonlinear Rossby wave dynamics.

Open access
Gabriel Wolf
and
Volkmar Wirth

Abstract

It has been suggested that upper-tropospheric Rossby wave packets propagating along the midlatitude waveguide may play a role for triggering severe weather. This motivates the search for robust methods to detect and track Rossby wave packets and to diagnose their properties. In the framework of several observed cases, this paper compares different methods that have been proposed for these tasks, with an emphasis on horizontal propagation and on a particular formulation of a wave activity flux previously suggested by Takaya and Nakamura. The utility of this flux is compromised by the semigeostrophic nature of upper-tropospheric Rossby waves, but this problem can partly be overcome by a semigeostrophic coordinate transformation. The wave activity flux allows one to obtain information from a single snapshot about the meridional propagation, in particular propagation from or into polar and subtropical latitudes, as well as about the onset of wave breaking. This helps to clarify the dynamics of individual wave packets in cases where other, more conventional methods provide ambiguous or even misleading information. In some cases, the “true dynamics” of the Rossby wave packet turns out to be more complex than apparent from the more conventional diagnostics, and this may have important implications for the predictability of the wave packet.

Full access
Andrea Schneidereit
,
Dieter H. W. Peters
,
Christian M. Grams
,
Julian F. Quinting
,
Julia H. Keller
,
Gabriel Wolf
,
Franziska Teubler
,
Michael Riemer
, and
Olivia Martius

Abstract

Tropospheric forcing of planetary wavenumber 2 is examined in the prephase of the major stratospheric sudden warming event in January 2009 (MSSW 2009). Because of a huge increase in Eliassen–Palm fluxes induced mainly by wavenumber 2, easterly angular momentum is transported into the Arctic stratosphere, deposited, and then decelerates the polar night jet. In agreement with earlier studies, the results reveal that the strongest eddy heat fluxes, associated with wavenumber 2, occur at 100 hPa during the prephase of MSSW 2009 in ERA-Interim. In addition, moderate conditions of the cold phase of ENSO (La Niña) contribute to the eddy heat flux anomaly. It is shown that enhanced tropospheric wave forcing over Alaska and Scandinavia is caused by tropical processes in two ways. First, in a climatological sense, La Niña contributes to an enhanced anticyclonic flow over both regions. Second, the Madden–Julian oscillation (MJO) has an indirect influence on the Alaskan ridge by enhancing eddy activity over the North Pacific. This is manifested in an increase in cyclone frequency and associated warm conveyor belt outflow, which contribute to the maintenance and amplification of the Alaskan anticyclone. The Scandinavian ridge is maintained by wave trains emanating from the Alaskan ridge propagating eastward, including an enhanced transport of eddy kinetic energy. The MSSW 2009 is an extraordinary case of how a beneficial phasing of La Niña and MJO conditions together with multiscale interactions enhances tropospheric forcing for wavenumber 2–induced zonal mean eddy heat flux in the lower stratosphere.

Full access
Julia H. Keller

Abstract

A tropical cyclone (TC) undergoing extratropical transition (ET) may support the amplification of a Rossby wave train in the downstream midlatitudes. Within the context of downstream baroclinic development, the TC acts as an additional source of eddy kinetic energy ( ). Previous studies concluded that the impact depends, in particular, on the phasing between the TC and the midlatitude flow and the continuation of the generation during ET. These studies did not quantify the impact of ET on the within a downstream Rossby wave train.

The present study uses ensemble sensitivity analysis to examine the sensitivity of downstream Rossby wave train amplification to the budget of the transitioning TC and of the upstream midlatitude features for Typhoon Choi-Wan (2009) and Hurricane Hanna (2008) in ECMWF ensemble forecasts. The amplification of the downstream wave train is measured using the amplitude of its associated maxima. The sensitivity of the maximum’s intensity at a particular forecast time to the budget terms of the TC and the upstream midlatitudes at earlier forecast times is determined. The results show that increasing the budget terms within Choi-Wan (Hanna) by one standard deviation can result in an up to 36% (23%) more intense downstream maximum. This is favored by the phasing between Choi-Wan and the midlatitude trough, and the reintensification of Hanna, respectively. By contrast, weaker contributions to downstream Rossby wave amplification arise from budget terms associated with flow features in the upstream midlatitudes.

Full access

The Key Role of Diabatic Outflow in Amplifying the Midlatitude Flow: A Representative Case Study of Weather Systems Surrounding Western North Pacific Extratropical Transition

Christian M. Grams
and
Heather M. Archambault

Abstract

Recurving tropical cyclones (TCs) undergoing extratropical transition (ET) may substantially modify the large-scale midlatitude flow pattern. This study highlights the role of diabatic outflow in midlatitude flow amplification within the context of a review of the physical and dynamical processes involved in ET. Composite fields of 12 western North Pacific ET cases are used as initial and boundary conditions for high-resolution numerical simulations of the North Pacific–North American sector with and without the TC present. It is demonstrated that a three-stage sequence of diabatic outflow associated with different weather systems is involved in triggering a highly amplified midlatitude flow pattern: 1) preconditioning by a predecessor rain event (PRE), 2) TC–extratropical flow interaction, and 3) downstream flow amplification by a downstream warm conveyor belt (WCB). An ensemble of perturbed simulations demonstrates the robustness of these stages. Beyond earlier studies investigating PREs, recurving TCs, and WCBs individually, here the fact that each impacts the midlatitude flow through a similar sequence of processes surrounding ET is highlighted. Latent heat release in rapidly ascending air leads to a net transport of low-PV air into the upper troposphere. Negative PV advection by the diabatically driven outflow initiates ridge building, accelerates and anchors a midlatitude jet streak, and overall amplifies the upper-level Rossby wave pattern. However, the three weather systems markedly differ in terms of the character of diabatic heating and associated outflow height, with the TC outflow reaching highest and the downstream WCB outflow producing the strongest negative PV anomaly.

Full access
Julian F. Quinting
and
Sarah C. Jones

Abstract

Many studies have highlighted the importance of recurving tropical cyclones (TCs) in triggering Rossby waves. This study investigates the impact of western North Pacific (WNP), south Indian Ocean, and North Atlantic recurving TCs on the amplitude and frequency of synoptic-scale Rossby wave packets (RWPs) over a 30-yr period. The results indicate a significant increase of RWP frequency downstream of WNP and south Indian Ocean TCs. A statistically significant RWP amplitude anomaly downstream of these TCs suggests that RWPs, which are associated with TCs, are stronger than those that generally occur in midlatitudes. North Atlantic TCs do not seem to be associated with a statistically significant increase in RWP frequency and amplitude downstream.

Processes that contribute to Rossby wave amplification are identified by creating composites for WNP TCs with and without downstream development. Potential vorticity, eddy kinetic energy, and quasigeostrophic forcing diagnostics highlight dynamical mechanisms that contribute to the synergistic interaction between the TC and the midlatitude flow. The existence of an upstream Rossby wave favors a downstream development. Diabatically enhanced upper-level divergent flow that can be attributed to the nonlinear interaction between the TC and the midlatitude flow impedes the eastward propagation of the upstream trough, amplifies the downstream ridge, and intensifies the jet. The amplified midlatitude flow provides upper-level forcing, which helps to maintain the predominantly diabatically driven divergent flow.

Forecast uncertainties that are related to these complex TC–midlatitude flow interactions may spread into downstream regions. A climatological analysis of ensemble reforecast data emphasizes the importance of TC–midlatitude flow interactions and Rossby wave amplification on downstream predictability.

Full access
Yannick Barton
,
Paraskevi Giannakaki
,
Harald von Waldow
,
Clément Chevalier
,
Stephan Pfahl
, and
Olivia Martius

Abstract

Temporal clustering of extreme precipitation events on subseasonal time scales is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering.

An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. Also used is a modified version of Ripley’s K function, which determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season.

Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upper-level breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.

Full access