Browse

You are looking at 1 - 2 of 2 items for :

  • Journal of Atmospheric and Oceanic Technology x
  • Plains Elevated Convection At Night (PECAN) x
  • Refine by Access: Content accessible to me x
Clear All
J. C. Hubbert

Abstract

Temporal differential reflectivity bias variations are investigated using the National Center for Atmospheric Research (NCAR) S-band dual-polarization Doppler radar (S-Pol). Using data from the Multi-Angle Snowflake Camera-Ready (MASCRAD) Experiment, S-Pol measurements over extended periods reveal a significant correlation between the ambient temperature at the radar site and the bias. Using radar scans of the sun and the ratio of cross-polar powers, the components of the radar that cause the variation of the bias are identified. It is postulated that the thermal expansion of the antenna is likely the primary cause of the observed bias variation. The cross-polar power (CP) calibration technique, which is based on the solar and cross-polar power measurements, is applied to data from the Plains Elevated Convection at Night (PECAN) field project. The bias from the CP technique is compared to vertical-pointing bias measurements, and the uncertainty of the bias estimates is given. An algorithm is derived to correct the radar data for the time- and temperature-varying bias. Bragg scatter measurements are used to corroborate the CP technique bias measurements.

Full access
Tammy M. Weckwerth, Kristy J. Weber, David D. Turner, and Scott M. Spuler

Abstract

A water vapor micropulse differential absorption lidar (DIAL) instrument was developed collaboratively by the National Center for Atmospheric Research (NCAR) and Montana State University (MSU). This innovative, eye-safe, low-power, diode-laser-based system has demonstrated the ability to obtain unattended continuous observations in both day and night. Data comparisons with well-established water vapor observing systems, including radiosondes, Atmospheric Emitted Radiance Interferometers (AERIs), microwave radiometer profilers (MWRPs), and ground-based global positioning system (GPS) receivers, show excellent agreement. The Pearson’s correlation coefficient for the DIAL and radiosondes is consistently greater than 0.6 from 300 m up to 4.5 km AGL at night and up to 3.5 km AGL during the day. The Pearson’s correlation coefficient for the DIAL and AERI is greater than 0.6 from 300 m up to 2.25 km at night and from 300 m up to 2.0 km during the day. Further comparison with the continuously operating GPS instrumentation illustrates consistent temporal trends when integrating the DIAL measurements up to 6 km AGL.

Full access