Browse

You are looking at 1 - 2 of 2 items for :

  • Journal of the Atmospheric Sciences x
  • Global Precipitation Measurement (GPM): Science and Applications x
  • Refine by Access: Content accessible to me x
Clear All
George Duffy
,
Greg Mcfarquhar
,
Stephen W. Nesbitt
, and
Ralf Bennartz

Abstract

The retrieval of the mass-weighted mean diameter (D m ) is a fundamental component of spaceborne precipitation retrievals. The Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) satellite is the first satellite to use dual-wavelength ratio measurements—the quotient of radar reflectivity factors (Z) measured at Ku and Ka wavelengths—to retrieve D m . While it is established that DWR, being theoretically insensitive to changes in ice crystal mass and concentration, can provide a superior retrieval of D m compared to Z-based retrievals, the benefits of this retrieval have yet to be directly observed or quantified. In this study, DWR–D m and Z–D m relationships are empirically generated from collocated airborne radar and in situ cloud particle probe measurements. Data are collected during nine intensive observation periods (IOPs) from three experiments representing different locations and times of year. Across IOPs with varying ice crystal concentrations, cloud temperatures, and storm types, Z–D m relationships vary considerably while the DWR–D m relationship remains consistent. This study confirms that a DWR–D m relationship can provide a more accurate and consistent D m retrieval than a Z–D m relationship, quantified by a reduced overall RMSE (0.19 and 0.25 mm, respectively) and a reduced range of biases between experiments (0.11 and 0.32 mm, respectively).

Full access
Xiang Ni
,
Chuntao Liu
, and
Edward Zipser

Abstract

Using three years of observations from the Dual-Frequency Precipitation Radar (DPR) aboard the Global Precipitation Measurement (GPM) Core Observatory, properties of the cores of deep convection are examined. First, deep convective systems are selected, defined as GPM precipitation features with maximum 20-dBZ echo-top heights above 10 km. The cores of deep convection are described by the profiles of Ku- and Ka-band radar reflectivity at the location of the highest echo top in each deep convective system. Then the dual-frequency ratio (DFR) profile is derived by subtracting Ka-band from Ku-band radar reflectivity. It is found that values of DFR are larger over land than over ocean in general near the top of the convection, which is consistent with larger ice particles in stronger updrafts in continental convection. The magnitude of DFR at 12 km is positively correlated with the convection intensity indicated by 20- and 30-dBZ echo tops. The microphysical properties including volume-weighted mean diameter, ice water content, and total ice particle number concentration are derived using a simple lookup table approach. Under the same particle size distribution assumption, the cores of deep convection over land have larger ice particle size, higher ice water content, and lower particle concentration than those over ocean at levels above 10 km, but with some distinct regional variations.

Full access