Browse
Abstract
The summertime California Current System (CCS) is characterized by energetic mesoscale eddies, whose sea surface temperature (SST) and surface current can significantly modify the wind stress and Ekman pumping. Relative importance of the eddy–wind interactions via SST and surface current in the CCS is examined using a high-resolution (7 km) regional coupled model with a novel coupling approach to isolate the small-scale air–sea coupling by SST and surface current. Results show that when the eddy-induced surface current is allowed to modify the wind stress, the spatially averaged surface eddy kinetic energy (EKE) is reduced by 42%, and this is primarily due to enhanced surface eddy drag and reduced wind energy transfer. In contrast, the eddy-induced SST–wind coupling has no significant impact on the EKE. Furthermore, eddy-induced SST and surface current modify the Ekman pumping via their crosswind SST gradient and surface vorticity gradient, respectively. The resultant magnitudes of the Ekman pumping velocity are comparable, but the implied feedback effects on the eddy statistics are different. The surface current-induced Ekman pumping mainly attenuates the amplitude of cyclonic and anticyclonic eddies, acting to reduce the eddy activity, while the SST-induced Ekman pumping primarily affects the propagation. Time mean–rectified change in SST is determined by the altered offshore temperature advection by the mean and eddy currents, but the magnitude of the mean SST change is greater with the eddy-induced current effect. The demonstrated remarkably strong dynamical response in the CCS system to the eddy-induced current–wind coupling indicates that eddy-induced current should play an important role in the regional coupled ocean–atmosphere system.
Abstract
The summertime California Current System (CCS) is characterized by energetic mesoscale eddies, whose sea surface temperature (SST) and surface current can significantly modify the wind stress and Ekman pumping. Relative importance of the eddy–wind interactions via SST and surface current in the CCS is examined using a high-resolution (7 km) regional coupled model with a novel coupling approach to isolate the small-scale air–sea coupling by SST and surface current. Results show that when the eddy-induced surface current is allowed to modify the wind stress, the spatially averaged surface eddy kinetic energy (EKE) is reduced by 42%, and this is primarily due to enhanced surface eddy drag and reduced wind energy transfer. In contrast, the eddy-induced SST–wind coupling has no significant impact on the EKE. Furthermore, eddy-induced SST and surface current modify the Ekman pumping via their crosswind SST gradient and surface vorticity gradient, respectively. The resultant magnitudes of the Ekman pumping velocity are comparable, but the implied feedback effects on the eddy statistics are different. The surface current-induced Ekman pumping mainly attenuates the amplitude of cyclonic and anticyclonic eddies, acting to reduce the eddy activity, while the SST-induced Ekman pumping primarily affects the propagation. Time mean–rectified change in SST is determined by the altered offshore temperature advection by the mean and eddy currents, but the magnitude of the mean SST change is greater with the eddy-induced current effect. The demonstrated remarkably strong dynamical response in the CCS system to the eddy-induced current–wind coupling indicates that eddy-induced current should play an important role in the regional coupled ocean–atmosphere system.
Abstract
Ice bands are frequently observed over marginal ice zones in polar seas. A typical ice-band pattern has a regular spacing of about 10 km and extends over 100 km in the marginal ice zone. Further, the long axis of an ice band lies to the left (right) with respect to the wind direction in the Northern (Southern) Hemisphere. Here, the study shows that the resonance between ice-band pattern propagation and internal inertia–gravity waves below the sea ice well explains the ice-band pattern formation. Internal waves are generated by the difference between the stress on the open water and the stress on ice-covered water. This in turn reinforces the formation of an ice-band pattern with a regular band spacing. Specifically, the authors have found the following: 1) A band spacing on the order of 10 km is selected by the resonance condition in which the ice-band pattern propagation speed coincides with the phase speed of internal inertia–gravity waves. 2) The ice bands tend to develop favorably when the wind direction and the band propagation direction are nearly parallel. The velocity acceleration caused by the periodic differential stress associated with the ice bands, driven by the wind parallel to the band propagation direction, is important. The wind direction may turn to the left (right) slightly in the Northern (Southern) Hemisphere as a result of the Coriolis force acting on ice. Satellite images confirmed that the band spacing of the ice-band pattern in the polar seas is consistent with this theory.
Abstract
Ice bands are frequently observed over marginal ice zones in polar seas. A typical ice-band pattern has a regular spacing of about 10 km and extends over 100 km in the marginal ice zone. Further, the long axis of an ice band lies to the left (right) with respect to the wind direction in the Northern (Southern) Hemisphere. Here, the study shows that the resonance between ice-band pattern propagation and internal inertia–gravity waves below the sea ice well explains the ice-band pattern formation. Internal waves are generated by the difference between the stress on the open water and the stress on ice-covered water. This in turn reinforces the formation of an ice-band pattern with a regular band spacing. Specifically, the authors have found the following: 1) A band spacing on the order of 10 km is selected by the resonance condition in which the ice-band pattern propagation speed coincides with the phase speed of internal inertia–gravity waves. 2) The ice bands tend to develop favorably when the wind direction and the band propagation direction are nearly parallel. The velocity acceleration caused by the periodic differential stress associated with the ice bands, driven by the wind parallel to the band propagation direction, is important. The wind direction may turn to the left (right) slightly in the Northern (Southern) Hemisphere as a result of the Coriolis force acting on ice. Satellite images confirmed that the band spacing of the ice-band pattern in the polar seas is consistent with this theory.
Abstract
The mechanism responsible for the annual cycle of the flow through the straits of the Japan Sea is investigated using a two-layer model. Observations show maximum throughflow from summer to fall and minimum in winter, occurring synchronously at the three major straits: Tsushima, Tsugaru, and Soya Straits. This study finds the subpolar winds located to the north of Japan as the leading forcing agent, which first affects the Soya Strait rather than the Tsushima or Tsugaru Straits. The subpolar winds generate baroclinic Kelvin waves along the coastlines of the subpolar gyre, affect the sea surface height at the Soya Strait, and modify the flow through the strait. This causes barotropic adjustment to occur inside the Japan Sea and thus affect the flow at the Tsugaru and Tsushima Straits almost synchronously. The barotropic adjustment mechanism explains well why the observations show a similar annual cycle at the three straits. The annual cycle at the Tsugaru Strait is further shown to be weaker than that in the other two straits based on frictional balance around islands, that is, frictional stresses exerted around an island integrate to zero. In the Tsugaru Strait, the flows induced by the frictional integrals around the northern (Hokkaido) and southern (Honshu) islands are in opposite directions and tend to cancel out. Frictional balance also suggests that the annual cycle at the Tsugaru Strait is likely in phase with that at the Soya Strait because the length scale of the northern island is much shorter than that of the southern island.
Abstract
The mechanism responsible for the annual cycle of the flow through the straits of the Japan Sea is investigated using a two-layer model. Observations show maximum throughflow from summer to fall and minimum in winter, occurring synchronously at the three major straits: Tsushima, Tsugaru, and Soya Straits. This study finds the subpolar winds located to the north of Japan as the leading forcing agent, which first affects the Soya Strait rather than the Tsushima or Tsugaru Straits. The subpolar winds generate baroclinic Kelvin waves along the coastlines of the subpolar gyre, affect the sea surface height at the Soya Strait, and modify the flow through the strait. This causes barotropic adjustment to occur inside the Japan Sea and thus affect the flow at the Tsugaru and Tsushima Straits almost synchronously. The barotropic adjustment mechanism explains well why the observations show a similar annual cycle at the three straits. The annual cycle at the Tsugaru Strait is further shown to be weaker than that in the other two straits based on frictional balance around islands, that is, frictional stresses exerted around an island integrate to zero. In the Tsugaru Strait, the flows induced by the frictional integrals around the northern (Hokkaido) and southern (Honshu) islands are in opposite directions and tend to cancel out. Frictional balance also suggests that the annual cycle at the Tsugaru Strait is likely in phase with that at the Soya Strait because the length scale of the northern island is much shorter than that of the southern island.
Abstract
Using oceanographic observations and an eddy-resolving ice–ocean coupled model simulation from 1955 to 2004, the effects of the wind-driven ocean circulation change that occurred in the late 1970s during multidecadal-scale freshening of the North Pacific Intermediate Water (NPIW) at salinity minimum density (~26.8 σ θ ) were investigated. An analysis of the observations revealed that salinity decreased significantly at the density range of 26.6–26.8 σ θ in the western subtropical gyre, including the mixed water region (MWR). The temporal variability of the salinity is dominated by the marked change in the late 1970s. With results similar to the observations, the model, selectively forced by the interannual variability of the wind-driven ocean circulation, simulated significant freshening of the intermediate layer over the subtropical gyre. The significant freshening is related to the increase in southward transport of the Oyashio associated with the intensification of the Aleutian low. Accompanying these changes, the intrusion of fresh and low potential vorticity water, originating in the Okhotsk Sea, to the MWR increased, and the freshening signal propagated farther southward in the western subtropical gyre during the subsequent 6 yr, crossing the Kuroshio Extension. These results indicate that the multidecadal-scale freshening of the NPIW is partly caused by intensification of the wind-driven cross-gyre transport of the subarctic water to the subtropical gyre.
Abstract
Using oceanographic observations and an eddy-resolving ice–ocean coupled model simulation from 1955 to 2004, the effects of the wind-driven ocean circulation change that occurred in the late 1970s during multidecadal-scale freshening of the North Pacific Intermediate Water (NPIW) at salinity minimum density (~26.8 σ θ ) were investigated. An analysis of the observations revealed that salinity decreased significantly at the density range of 26.6–26.8 σ θ in the western subtropical gyre, including the mixed water region (MWR). The temporal variability of the salinity is dominated by the marked change in the late 1970s. With results similar to the observations, the model, selectively forced by the interannual variability of the wind-driven ocean circulation, simulated significant freshening of the intermediate layer over the subtropical gyre. The significant freshening is related to the increase in southward transport of the Oyashio associated with the intensification of the Aleutian low. Accompanying these changes, the intrusion of fresh and low potential vorticity water, originating in the Okhotsk Sea, to the MWR increased, and the freshening signal propagated farther southward in the western subtropical gyre during the subsequent 6 yr, crossing the Kuroshio Extension. These results indicate that the multidecadal-scale freshening of the NPIW is partly caused by intensification of the wind-driven cross-gyre transport of the subarctic water to the subtropical gyre.
Abstract
Three mechanisms for self-induced Ekman pumping in the interiors of mesoscale ocean eddies are investigated. The first arises from the surface stress that occurs because of differences between surface wind and ocean velocities, resulting in Ekman upwelling and downwelling in the cores of anticyclones and cyclones, respectively. The second mechanism arises from the interaction of the surface stress with the surface current vorticity gradient, resulting in dipoles of Ekman upwelling and downwelling. The third mechanism arises from eddy-induced spatial variability of sea surface temperature (SST), which generates a curl of the stress and therefore Ekman pumping in regions of crosswind SST gradients. The spatial structures and relative magnitudes of the three contributions to eddy-induced Ekman pumping are investigated by collocating satellite-based measurements of SST, geostrophic velocity, and surface winds to the interiors of eddies identified from their sea surface height signatures. On average, eddy-induced Ekman pumping velocities approach O(10) cm day−1. SST-induced Ekman pumping is usually secondary to the two current-induced mechanisms for Ekman pumping. Notable exceptions are the midlatitude extensions of western boundary currents and the Antarctic Circumpolar Current, where SST gradients are strong and all three mechanisms for eddy-induced Ekman pumping are comparable in magnitude. Because the polarity of current-induced curl of the surface stress opposes that of the eddy, the associated Ekman pumping attenuates the eddies. The decay time scale of this attenuation is proportional to the vertical scale of the eddy and inversely proportional to the wind speed. For typical values of these parameters, the decay time scale is about 1.3 yr.
Abstract
Three mechanisms for self-induced Ekman pumping in the interiors of mesoscale ocean eddies are investigated. The first arises from the surface stress that occurs because of differences between surface wind and ocean velocities, resulting in Ekman upwelling and downwelling in the cores of anticyclones and cyclones, respectively. The second mechanism arises from the interaction of the surface stress with the surface current vorticity gradient, resulting in dipoles of Ekman upwelling and downwelling. The third mechanism arises from eddy-induced spatial variability of sea surface temperature (SST), which generates a curl of the stress and therefore Ekman pumping in regions of crosswind SST gradients. The spatial structures and relative magnitudes of the three contributions to eddy-induced Ekman pumping are investigated by collocating satellite-based measurements of SST, geostrophic velocity, and surface winds to the interiors of eddies identified from their sea surface height signatures. On average, eddy-induced Ekman pumping velocities approach O(10) cm day−1. SST-induced Ekman pumping is usually secondary to the two current-induced mechanisms for Ekman pumping. Notable exceptions are the midlatitude extensions of western boundary currents and the Antarctic Circumpolar Current, where SST gradients are strong and all three mechanisms for eddy-induced Ekman pumping are comparable in magnitude. Because the polarity of current-induced curl of the surface stress opposes that of the eddy, the associated Ekman pumping attenuates the eddies. The decay time scale of this attenuation is proportional to the vertical scale of the eddy and inversely proportional to the wind speed. For typical values of these parameters, the decay time scale is about 1.3 yr.