Browse

You are looking at 1 - 10 of 11,275 items for :

  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All
Todd Emmenegger
,
Fiaz Ahmed
,
Yi-Hung Kuo
,
Shaocheng Xie
,
Chengzhu Zhang
,
Cheng Tao
, and
J. David Neelin

Abstract

Conditional instability and the buoyancy of plumes drive moist convection but have a variety of representations in model convective schemes. Vertical thermodynamic structure information from Atmospheric Radiation Measurement (ARM) sites and reanalysis (ERA5), satellite-derived precipitation (TRMM3b42), and diagnostics relevant for plume buoyancy are used to assess climate models. Previous work has shown that CMIP6 models represent moist convective processes more accurately than their CMIP5 counterparts. However, certain biases in convective onset remain pervasive among generations of CMIP modeling efforts. We diagnose these biases in a cohort of nine CMIP6 models with subdaily output, assessing conditional instability in profiles of equivalent potential temperature, θe , and saturation equivalent potential temperature, θes , in comparison to a plume model with different mixing assumptions. Most models capture qualitative aspects of the θes vertical structure, including a substantial decrease with height in the lower free troposphere associated with the entrainment of subsaturated air. We define a “pseudo-entrainment” diagnostic that combines subsaturation and a θes measure of conditional instability similar to what entrainment would produce under the small-buoyancy approximation. This captures the trade-off between larger θes lapse rates (entrainment of dry air) and small subsaturation (permits positive buoyancy despite high entrainment). This pseudo-entrainment diagnostic is also a reasonable indicator of the critical value of integrated buoyancy for precipitation onset. Models with poor θe /θes structure (those using variants of the Tiedtke scheme) or low entrainment runs of CAM5, and models with low subsaturation, such as NASA-GISS, lie outside the observational range in this diagnostic.

Open access
Víctor C. Mayta
and
Ángel F. Adames Corraliza

Abstract

Observations of column water vapor in the tropics show significant variations in space and time, indicating that it is strongly influenced by the passage of weather systems. It is hypothesized that many of the influencing systems are moisture modes, systems whose thermodynamics are governed by moisture. On the basis of four objective criteria, results suggest that all oceanic convectively coupled tropical depression (TD)-like waves and equatorial Rossby waves are moisture modes. These modes occur where the horizontal column moisture gradient is steep and not where the column water vapor content is high. Despite geographical basic-state differences, the moisture modes are driven by the same mechanisms across all basins. The moist static energy (MSE) anomalies propagate westward by horizontal moisture advection by the trade winds. Their growth is determined by the advection of background moisture by the anomalous meridional winds and anomalous radiative heating. Horizontal maps of column moisture and 850-hPa streamfunction show that convection is partially collocated with the low-level circulation in nearly all the waves. Both this structure and the process of growth indicate that the moisture modes grow from moisture–vortex instability. Last, space–time spectral analysis reveals that column moisture and low-level meridional winds are coherent and exhibit a phasing that is consistent with a poleward latent energy transport. Collectively, these results indicate that moisture modes are ubiquitous across the tropics. That they occur in regions of steep horizontal moisture gradients and grow from moisture–vortex instability suggests that these gradients are inherently unstable and are subject to continuous stirring.

Significance Statement

Over the tropics, column water vapor has been found to be highly correlated with precipitation, especially in slowly evolving systems. These observations and theory support the hypothesis that moisture modes exist, a type of precipitating weather system that does not exist in dry theory. In this study, we found that all oceanic tropical depression (TD)-like waves and equatorial Rossby waves are moisture modes. These systems exist in regions where moisture varies greatly in space, and they grow by transporting air from the humid areas of the tropics toward their low pressure center. These results indicate that the climatological-mean distribution of moisture in the tropics is unstable and is subject to stirring by moisture modes.

Open access
Clara Deser
,
Adam S. Phillips
,
Michael. A. Alexander
,
Dillon J. Amaya
,
Antonietta Capotondi
,
Michael G. Jacox
, and
James D. Scott

Abstract

The future evolution of sea surface temperature (SST) extremes is of great concern, not only for the health of marine ecosystems and sustainability of commercial fisheries, but also for precipitation extremes fueled by moisture evaporated from the ocean. This study examines the projected influence of anthropogenic climate change on the intensity and duration of monthly SST extremes, hereafter termed marine heat waves (MHWs) and marine cold waves (MCWs), based on initial-condition large ensembles with seven Earth system models. The large number of simulations (30–100) with each model allows for robust quantification of future changes in both the mean state and variability in each model. In general, models indicate that future changes in variability will cause MHW and MCW events to intensify in the northern extratropics and weaken in the tropics and Southern Ocean, and to shorten in duration in many areas. These changes are generally symmetric between MHWs and MCWs, except for the longitude of duration change in the tropical Pacific and sign of duration change in the Arctic. Projected changes in ENSO account for a large fraction of the variability-induced changes in MHW and MCW characteristics in each model and are responsible for much of the intermodel spread as a result of differences in future ENSO behavior. The variability-related changes in MHW and MCW characteristics noted above are superimposed upon large mean-state changes. Indeed, their contribution to the total change in SST during MHW and MCW events is generally <10% except in polar regions where they contribute upward of 50%.

Open access
Weizhen Chen
,
Chang-Hoi Ho
,
Song Yang
,
Zeming Wu
, and
Hongjing Chen

Abstract

The Madden–Julian oscillation (MJO) and the quasi-biweekly oscillation (QBWO) are prominent components of the intraseasonal oscillations over the tropical Indo-Pacific Ocean. This study examines the tropical cyclone (TC) genesis over the Bay of Bengal (BOB) and the South China Sea (SCS) on an intraseasonal scale in May–June during 1979–2021. Results show that the convection associated with the two types of intraseasonal oscillations simultaneously modulates TC genesis in both ocean basins. As the MJO/QBWO convection propagated, TCs form alternately over the two basins, with a significant increase (decrease) in TC genesis frequency in the convective (nonconvective) MJO/QBWO phase. Based on the anomalous genesis potential index associated with the MJO/QBWO, an assessment of the influence of various factors on TC genesis is further assessed. Middle-level relative humidity and lower-level relative vorticity play key roles in the MJO/QBWO modulation on TC genesis. The MJO primarily enhances large-scale cross-equatorial moisture transport, resulting in significant moisture convergence, while the QBWO generally strengthens the monsoon trough and induces the retreat of the western North Pacific subtropical high, increasing the regional lower-level relative vorticity. The potential intensity and vertical wind shear make small or negative contributions. This study provides insights into the neighboring basin TC relationship at intraseasonal scales, which has a potential to improve the short-term prediction of regional TC activity.

Significance Statement

The Madden–Julian oscillation (MJO) and the quasi-biweekly oscillation (QBWO) are two types of intraseasonal tropical atmospheric oscillations. The development of tropical cyclones (TCs) is often accompanied by intraseasonal convection. This study highlights the distinct roles of MJO and QBWO in TC genesis over the South Asian marginal seas (e.g., Bay of Bengal and South China Sea). The QBWO can co-regulate TC genesis along with the background of the MJO, where the large-scale MJO mainly provides moisture, while the small-scale QBWO mainly contributes to vorticity. These findings provide useful information for subseasonal TCs forecasting. There are many developing countries along the South Asian marginal seacoast; therefore, further research on regional TC climate would help effectively reduce casualties and property damage.

Open access
Margo S. Andrews
,
Vittorio A. Gensini
,
Alex M. Haberlie
,
Walker S. Ashley
,
Allison C. Michaelis
, and
Mateusz Taszarek

Abstract

Elevated mixed layers (EMLs) influence the severe convective storm climatology in the contiguous United States (CONUS), playing an important role in the initiation, sustenance, and suppression of storms. This study creates a high-resolution climatology of the EML to analyze variability and potential changes in EML frequency and characteristics for the first time. An objective algorithm is applied to ERA5 to detect EMLs, defined in part as layers of steep lapse rates (≥8.0°C km−1) at least 200 hPa thick, in the CONUS and northern Mexico from 1979 to 2021. EMLs are most frequent over the Great Plains in spring and summer, with a standard deviation of 4–10 EML days per year highlighting sizable interannual variability. Mean convective inhibition associated with the EML’s capping inversion suggests many EMLs prohibit convection, although—like nearly all EML characteristics—there is considerable spread and notable seasonal variability. In the High Plains, statistically significant increases in EML days (4–5 more days per decade) coincide with warmer EML bases and steeper EML lapse rates, driven by warming and drying in the low levels of the western CONUS during the study period. Additionally, increases in EML base temperatures result in significantly more EML-related convective inhibition over the Great Plains, which may continue to have implications for convective storm frequency, intensity, severe perils, and precipitation if this trend persists.

Significance Statement

Elevated mixed layers (EMLs) play a role in the spatiotemporal frequency of severe convective storms and precipitation across the contiguous United States and northern Mexico. This research creates a detailed EML climatology from a modern reanalysis dataset to uncover patterns and potential changes in EML frequency and associated meteorological characteristics. EMLs are most common over the Great Plains in spring and summer, but show significant variability year-to-year. Robust increases in the number of days with EMLs have occurred since 1979 across the High Plains. Lapse rates associated with EMLs have trended steeper, in part due to warmer EML base temperatures. This has resulted in increasing EML convective inhibition, which has important implications for regional climate.

Open access
Yuwei Xie
,
Wenjun Zhang
,
Suqiong Hu
, and
Feng Jiang

Abstract

Sea surface temperature (SST) variability in the East China Sea–Kuroshio (EK) region has important implications for the surrounding weather, climate, and marine ecology. The year-to-year variations of the EK SST are expectedly linked to El Niño–Southern Oscillation (ENSO), the predominant predictability source of seasonal-to-interannual climate variability. Surprisingly, no significant SST signal is observed in the EK region when focusing on the ENSO autumn–winter season with the persistent and pronounced SST anomalies in the tropical Pacific. We find that a remarkable seasonal reversal appears in the ENSO–EK SST connection, shifting from a negative relationship in autumn [Aug(0)–Oct(0)] to a positive relationship in winter [Dec(0)–Feb(1)]. This reversal is mainly attributed to the seasonally varying ENSO-associated western North Pacific (WNP) atmospheric circulation patterns. During ENSO autumns, the anomalous WNP anticyclone is confined south of 20°N, which is accompanied with cyclonic circulation anomalies in the EK region. The associated anomalous northerly wind tends to enhance the background northerly wind, thereby facilitating the local SST cooling mainly via the wind–evaporation–SST effect. In the subsequent winter, the ENSO-related WNP anticyclonic anomalies intensify and extend toward the EK region. Consequently, the weakened background northerly wind induced by southerly wind anomalies leads to the increase of downward latent and sensible heat flux in the EK region, fostering the local SST warming. The observed seasonal reversal of ENSO impacts can be evidenced by the tropical Pacific pacemaker experiments, emphasizing the importance of seasonally modulated ENSO teleconnection and holding implications for the local SST climate prediction.

Open access
Zhuoyi Li
,
Qing Yang
,
Zhuguo Ma
,
Peili Wu
,
Yawen Duan
,
Mingxing Li
, and
Ziyan Zheng

Abstract

In China, the topography, climate, ecology, hydrology, and human environment vary greatly from southeast to northwest, and a typical natural and social environmental transition zone (i.e., comprehensive transition zone) exists near the “Hu Huanyong line,” which is a famous demographic dividing line in China, known as the Hu zone. Dry and wet climate changes in the Hu zone can have a significant impact on terrestrial ecosystems and hydrological conditions, ultimately affecting human–land relations. However, there is still a lack of clear understanding of environmental changes in the context of climate change in the Hu zone. Here, a quantitative analysis of climate change and its impacts on terrestrial hydrology and ecosystems from 1951 to 2020 is presented. The results showed that there exists a significant drying trend in the Hu zone and a dramatic decrease in terrestrial water storage (TWS), indicating that the environment has become worse. Conversely, from the perspective of significant greening, the environment has improved. This contradiction is mainly due to climate change dominating the depletion of TWS, while the increase in vegetation greenness is more driven by human activities including agricultural management and ecological restoration, offsetting to some extent the negative impact of water scarcity on vegetation growth.

Significance Statement

The Hu zone is a transition zone between southeast and northwest China, which is a sensitive area under climate change as well as key region for coordinated development. The purpose of this study is to reveal the long-term climate change in the Hu zone and its impacts on hydrology and ecology. Our results indicate a significant drying trend in this zone over the last 70 years, which led to a substantial reduction in water storage. However, the vegetation coverage increased due to human activities. This study provides guidance for agricultural structure adjustment and ecological protection in transition zones. Future research should focus more on the assessment and risk management of dry/wet changes in climate transition areas around the world.

Open access
Luca Famooss Paolini
,
Nour-Eddine Omrani
,
Alessio Bellucci
,
Panos J. Athanasiadis
,
Paolo Ruggieri
,
Casey R. Patrizio
, and
Noel Keenlyside

Abstract

The interaction between the North Atlantic Oscillation (NAO) and the latitudinal shifts of the Gulf Stream sea surface temperature front (GSF) has been the subject of extensive investigations. There are indications of nonstationarity in this interaction, but differences in the methodologies used in previous studies make it difficult to draw consistent conclusions. Furthermore, there is a lack of consensus on the key mechanisms underlying the response of the GSF to the NAO. This study assesses the possible nonstationarity in the NAO–GSF interaction and the mechanisms underlying this interaction during 1950–2020, using reanalysis data. Results show that the NAO and GSF indices covary on the decadal time scale but only during 1972–2018. A secondary peak in the NAO–GSF covariability emerges on multiannual time scales but only during 2005–15. The nonstationarity in the decadal NAO–GSF covariability is also manifested in variations in their lead–lag relationship. Indeed, the NAO tends to lead the GSF shifts by 3 years during 1972–90 and by 2 years during 1990–2018. The response of the GSF to the NAO at the decadal time scale can be interpreted as the joint effect of the fast response of wind-driven oceanic circulation, the response of deep oceanic circulation, and the propagation of Rossby waves. However, there is evidence of Rossby wave propagation only during 1972–90. Here it is suggested that the nonstationarity of Rossby wave propagation caused the time lag between the NAO and the GSF shifts on the decadal time scale to differ between the two time periods.

Open access
A. P. Williams
,
K. J. Anchukaitis
, and
A. M. Varuolo-Clarke

Abstract

Cool-season (November–March) precipitation contributes critically to California’s water resources and flood risk. In the Sierra Nevada, approximately half of cool-season precipitation is derived from a small proportion of storms classified as atmospheric rivers (ARs). The frequency and intensity of ARs are highly variable from year to year and unreliable climate teleconnections limit forecasting. However, previous research provides intriguing evidence of cycles with biennial (2.2 years) and decadal (10–20 years) periodicities in Sierra Nevada cool-season precipitation, suggesting it is not purely stochastic. To identify the source of this cyclicity, we decompose daily precipitation records (1949–2022) into contributions from ARs versus non-ARs, as well as into variations in frequency and intensity. We find that the biennial and decadal spectral peaks in Sierra Nevada precipitation totals are entirely due to precipitation delivered by ARs, and primarily due to variations in the frequency of days with AR precipitation. While total non-AR precipitation correlates with sea surface temperature (SST) and atmospheric pressure patterns associated with the El Niño–Southern Oscillation, AR precipitation shows no consistent remote teleconnections at any periodicity. Supporting this finding, atmospheric simulations forced by observed SSTs do not reproduce the biennial or decadal precipitation variations identified in observations. These results, combined with the lack of long-term stable cycles in previously published tree-ring reconstructions, suggest that the observed biennial and decadal quasi-cyclicity in Sierra Nevada precipitation is unreliable as a forecasting tool.

Significance Statement

In California’s Sierra Nevada, where most of the state’s above-ground water resources originate, cool-season precipitation totals exhibited year-to-year and decadal cyclicity over the past century. Long-range forecasts are notoriously unskillful in this region, so nonrandom cycles would be intriguing to water managers challenged to simultaneously minimize flood and drought risk. Over 1949–2022, precipitation cycles were driven by variations in the number of atmospheric river (AR) storms per year even though ARs account for just half of total precipitation. These findings bring us a step closer to understanding the causes of precipitation cyclicity, but we find no evidence that the cycles were underpinned by larger-scale ocean–atmosphere circulations so we caution against relying on continued cycles into the future.

Open access
Grace Kortum
,
Gabriel A. Vecchi
,
Tsung-Lin Hsieh
, and
Wenchang Yang

Abstract

This study investigates the relative roles of sea surface temperature–forced climate changes and weather variability in driving the observed eastward shift of Atlantic hurricane tracks over the period from 1970 to 2021. A 10-member initial condition ensemble with a ∼25-km horizontal resolution tropical cyclone permitting atmospheric model (GFDL AM2.5-C360) with identical sea surface temperature and radiative forcing time series was analyzed in conjunction with historical hurricane track observations. While a frequency increase was recovered by all the simulations, the observed multidecadal eastward shift in tracks was not robust across the ensemble members, indicating that it included a substantial contribution from weather-scale variability. A statistical model was developed to simulate expected storm tracks based on genesis location and steering flow, and it was used to conduct experiments testing the roles of changing genesis location and changing steering flow in producing the multidecadal weather-driven shifts in storm tracks. These experiments indicated that shifts in genesis location were a substantially larger driver of these multidecadal track changes than changes in steering flow. The substantial impact of weather on tracks indicates that there may be limited predictability for multidecadal track changes like those observed, although basinwide frequency has greater potential for prediction. Additionally, understanding changes in genesis location appears essential to understanding changes in track location.

Significance Statement

From the 1970s to the present, there has been an increase in the frequency of North Atlantic hurricanes, but they have also shifted in location to the east, away from land. We explore whether this shift in hurricanes’ locations was caused by climatic factors or randomness to understand if and how these trends will persist. We also consider whether the shift was due to a change in where hurricanes started or how they moved over their lifespan. Analyzing data from observed and simulated hurricanes, we find that the shift was made more likely by climate factors, but ultimately occurred due to random variability in the hurricanes’ starting locations. These results suggest a higher uncertainty in the future location and impact of hurricanes and highlight the importance of studying why hurricanes originate where they do.

Open access