Browse

You are looking at 1 - 10 of 2,450 items for :

  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All
Juliana Valencia
,
Johanna Yepes
,
John F. Mejía
,
Alejandro Builes-Jaramillo
, and
Hernán D. Salas

Abstract

This study investigates how convectively coupled tropical easterly waves (TEWs) affect the Choco low-level jet (ChocoJet) as they move across the western Caribbean. The ChocoJet is a low-level flow over the eastern Pacific (EPAC) that modulates precipitation patterns over the tropical eastern Pacific and northwestern South America. By combining data from the Organization of Tropical East Pacific Convection (OTREC; August–September 2019), ERA5 reanalysis products, and satellite data, we analyze precipitation and circulation patterns during convectively coupled and nonconvectively coupled TEWs, comparing them to non-TEW days. During convectively coupled TEWs days, the ChocoJet strengthens and becomes more southerly, while the ITCZ moves northward, leading to enhanced precipitation over the western Caribbean and drier conditions over the northern part of the Colombian Pacific. In contrast, nonconvectively coupled TEW days exhibit reduced precipitation and precipitable water over the Caribbean and far EPAC, with a layer of northeasterly flow centered at 850 hPa flowing over a shallower, weaker, and more westerly ChocoJet. Additionally, convectively coupled TEWs are associated with a weaker western Caribbean and far eastern Pacific pressure gradient compared to nonconvective TEWs. These observable and predictable synoptic-scale circulation–precipitation relationships contribute to a better understanding of hydrometeorological variability in the region.

Significance Statement

Tropical easterly waves and related convective organization traversing the Caribbean Sea are important sources of synoptic-scale precipitation–circulation variability in the far eastern Pacific and Colombian Pacific. This eastern tropical Pacific study aims to identify precipitation–circulation relationships that enhance the understanding of synoptic-scale meteorological phenomena.

Open access
Madeleine Pascolini-Campbell
and
John T. Reager

Abstract

Extreme hydrological events (including droughts and floods) produce severe social and economic impacts. Monitoring hydrological processes from remote sensing is necessary to improve understanding and preparedness for these events, with current missions focusing on a range of hydrological variables (i.e., SWOT, SMAP, and GRACE). This study uses output from three state-of-the-art land surface assimilation models and an event clustering algorithm to identify the characteristic spatial and temporal scales of large-scale extreme dry and wet events in the contiguous United States for three major hydrological processes: precipitation, runoff, and soil moisture. We also examine the sensitivity of extreme event characteristics to model resolution and assess intermodel differences. We find that models generally agree in terms of the mean characteristics of events: precipitation dry events are of shorter duration in comparison with soil moisture and runoff events, and more intense events tend to be smaller in area. We also find that mean spatial and temporal characteristics are highly dependent on model resolution—important in the context of detecting and monitoring these events. Results from this study can be used to inform land surface model development, extreme hydrology event detection, and sampling requirements of upcoming remote sensing missions in hydrology.

Significance Statement

Understanding the fundamental characteristics of dry and wet extreme events (droughts and floods) is of importance for improving our preparedness and response to events, as well as for designing satellite observing systems that can adequately monitor them. Here we use output from land surface models to determine the average size and duration of large-scale extreme events for the contiguous United States using fine temporal data. We find that events that are most extreme—the most severe floods and droughts—tend to be shorter in duration and smaller in size. We also present an assessment of how three commonly used land surface models detect extreme hydrological events, which is important for assessments based on models. These findings are important for understanding the proportion of events that may be not adequately resolved by current hydrology remote sensing missions.

Open access
H. A. Titley
,
H. L. Cloke
,
E. M. Stephens
,
F. Pappenberger
, and
E. Zsoter

Abstract

Fluvial flooding is a major cause of death and damages from tropical cyclones (TCs), so it is important to understand the predictability of river flooding in TC cases, and the potential of global ensemble flood forecast systems to inform warning and preparedness activities. This paper demonstrates a methodology using ensemble forecasts to follow predictability and uncertainty through the forecast chain in the Global Flood Awareness System (GloFAS) to explore the connections between the skill of the TC track, intensity, precipitation, and river discharge forecasts. Using the case of Hurricane Iota, which brought severe flooding to Central America in November 2020, we assess the performance of each ensemble member at each stage of the forecast, along with the overall spread and change between forecast runs, and analyze the connections between each forecast component. Strong relationships are found between track, precipitation, and river discharge skill. Changes in TC intensity skill only result in significant improvements in discharge skill in river catchments close to the landfall location that are impacted by the heavy rains around the eyewall. The rainfall from the wider storm circulation is crucial to flood impacts in most of the affected river basins, with a stronger relationship with the post-landfall track error rather than the precise landfall location. We recommend the wider application of this technique in TC cases to investigate how this cascade of predictability varies with different forecast and geographical contexts in order to help inform flood early warning in TCs.

Significance Statement

This study demonstrates a methodology to analyze the cascade of predictability and uncertainty through the various stages of the tropical cyclone (TC) flood forecasting chain, illustrating how it can provide useful information to modelers interested in optimizing flood forecast skill, and to those who prepare and communicate flood forecasts with stakeholders and end-users in TC cases. The results highlight the importance of improving verification of ensemble TC precipitation forecasts, and of focusing on more than just the category of the storm and landfall location when forecasting and communicating flood impacts in TC cases.

Open access
Daniel C. Watters
,
Patrick N. Gatlin
,
David T. Bolvin
,
George J. Huffman
,
Robert Joyce
,
Pierre Kirstetter
,
Eric J. Nelkin
,
Sarah Ringerud
,
Jackson Tan
,
Jianxin Wang
, and
David Wolff

Abstract

NASA’s multisatellite precipitation product from the Global Precipitation Measurement (GPM) mission, the Integrated Multi-satellitE Retrievals for GPM (IMERG) product, is validated over tropical and high-latitude oceans from June 2014 to August 2021. This oceanic study uses the GPM Validation Network’s island-based radars to assess IMERG when the GPM Core Observatory’s Microwave Imager (GMI) observes precipitation at these sites (i.e., IMERG-GMI). Error tracing from the Level 3 (gridded) IMERG V06B product back through to the input Level 2 (satellite footprint) Goddard Profiling Algorithm GMI V05 climate (GPROF-CLIM) product quantifies the errors separately associated with each step in the gridding and calibration of the estimates from GPROF-CLIM to IMERG-GMI. Mean relative bias results indicate that IMERG-GMI V06B overestimates Alaskan high-latitude oceanic precipitation by +147% and tropical oceanic precipitation by +12% with respect to surface radars. GPROF-CLIM V05 overestimates Alaskan oceanic precipitation by +15%, showing that the IMERG algorithm’s calibration adjustments to the input GPROF-CLIM precipitation estimates increase the mean relative bias in this region. In contrast, IMERG adjustments are minimal over tropical waters with GPROF-CLIM overestimating oceanic precipitation by +14%. This study discovered that the IMERG V06B gridding process incorrectly geolocated GPROF-CLIM V05 precipitation estimates by 0.1° eastward in the latitude band 75°N–75°S, which has been rectified in the IMERG V07 algorithm. Correcting for the geolocation error in IMERG-GMI V06B improved oceanic statistics, with improvements greater in tropical waters than Alaskan waters. This error tracing approach enables a high-precision diagnosis of how different IMERG algorithm steps contribute to and mitigate errors, demonstrating the importance of collaboration between evaluation studies and algorithm developers.

Significance Statement

Evaluation of IMERG’s oceanic performance is very limited to date. This study uses the GPM Validation Network to conduct the first extensive assessment of IMERG V06B at its native resolution over both high-latitude and tropical oceans, and traces errors in IMERG-GMI back through to the input GPROF-CLIM GMI product. IMERG-GMI overestimates tropical oceanic precipitation (+12%) and strongly overestimates Alaskan oceanic precipitation (+147%) with respect to the island-based radars studied. IMERG’s GMI estimates are assessed as these should be the optimal estimates within the multisatellite product due to the GMI’s status as calibrator of the GPM passive microwave constellation.

Open access
Balaji Kumar Seela
,
Jayalakshmi Janapati
,
Pay-Liam Lin
,
Chen-Hau Lan
, and
Mu-Qun Huang

Abstract

Global precipitation demonstrates a substantial role in the hydrological cycle and offers tremendous implications in hydrometeorological studies. Advanced remote sensing instrumentations, such as the NASA Global Precipitation Measurement (GPM) mission Dual-Frequency Precipitation Radar (DPR), can estimate precipitation and cloud properties and have a unique capability to estimate the raindrop size information globally at snapshots in time. The present study validates the Level-2 data products of the GPM DPR with the long-term measurements of seven north Taiwan Joss–Waldvogel disdrometers from 2014 to 2022. The precipitation and drop size distribution parameters like rainfall rate (R; mm h−1), radar reflectivity factor (dBZ), mass-weighted mean drop diameter (Dm ; mm), and normalized intercept parameter (Nw ; m−3 mm−1) of the GPM DPR are compared with the disdrometers. Four different comparison approaches (point match, 5-km average, 10-km average, and optimal method) are used for the validation; among these four, the optimal strategy provided reasonable agreement between the GPM DPR and the disdrometers. The GPM DPR revealed superior performance in estimating the rain parameters in stratiform precipitation than the convective precipitation. Irrespective of algorithm type (dual- or single-frequency algorithm), sensitivity analysis revealed superior agreement for the mass-weighted mean diameter and inferior agreement for the normalized intercept parameter.

Open access
Alida Thiombiano
,
Alain Pietroniro
,
Tricia Stadnyk
,
Hyung Eum
,
Babak Farjad
,
Anil Gupta
, and
Barrie Bonsal

Abstract

Freshwater supplies in most western Canadian watersheds are threatened by the warming of temperatures because it alters the snow-dominated hydrologic patterns that characterize these cold regions. In this study, we used datasets from 12 climate simulations, which are associated with seven global climate models and four future scenarios and are participating in phase 6 of the Coupled Model Intercomparison Project, to calculate and assess the historical and future temporal patterns of 13 hydroclimate indicators relevant to water resources management. We conducted linear long-term trend and change analyses on their annual time series to provide insight into the potential regional impacts of the detected changes on water availability for all users. We implemented our framework on the Alberta oil sands region in Canada to support the monitoring of environmental changes in this region, relative to the established baseline 1985–2014. Our analysis indicates a persistent increase in the occurrence of extreme hot temperatures, fewer extreme cold temperatures, and an increase in warm spells and heatwaves, while precipitation-related indices show minor changes. Consequently, deficits in regional water availability during summer and water-year periods, as depicted by the standardized precipitation evapotranspiration indices, are expected. The combined effects of the strong climate warming signals and the small increases in precipitation annual amounts generally detected in this study suggest that drier conditions may become severe and frequent in the Alberta oil sands region. The challenging climate change risks identified for this region should therefore be continuously monitored, updated, and integrated to support a sustainable management for all water users.

Open access
Pei-Ning Feng
,
Stéphane Bélair
,
Dikraa Khedhaouiria
,
Franck Lespinas
,
Eva Mekis
, and
Julie M. Thériault

Abstract

The Canadian Precipitation Analysis System (CaPA) is an operational system that uses a combination of weather gauge and ground-based radar measurements together with short-term forecasts from a numerical weather model to provide near-real-time estimates of 6- and 24-h precipitation amounts. During the winter season, many gauge measurements are rejected by the CaPA quality control process because of the wind-induced undercatch for solid precipitation. The goal of this study is to improve the precipitation estimates over central Canada during the winter seasons from 2019 to 2022. Two approaches were tested. First, the quality control procedure in CaPA has been relaxed to increase the number of surface observations assimilated. Second, the automatic solid precipitation measurements were adjusted using a universal transfer function to compensate for the undercatch problem. Although increasing the wind speed threshold resulted in lower amounts and worse biases in frequency, the overall precipitation estimates are improved as the equitable threat score is improved because of a substantial decrease in the false alarm ratio, which compensates the degradation of the probability of detection. The increase of solid precipitation amounts using a transfer function improves the biases in both frequency and amounts and the probability of detection for all precipitation thresholds. However, the false alarm ratio deteriorates for large thresholds. The statistics vary from year to year, but an overall improvement is demonstrated by increasing the number of stations and adjusting the solid precipitation amounts for wind speed undercatch.

Open access
Michel Bechtold
,
Sara Modanesi
,
Hans Lievens
,
Pierre Baguis
,
Isis Brangers
,
Alberto Carrassi
,
Augusto Getirana
,
Alexander Gruber
,
Zdenko Heyvaert
,
Christian Massari
,
Samuel Scherrer
,
Stéphane Vannitsem
, and
Gabrielle De Lannoy

Abstract

Accurate streamflow simulations rely on good estimates of the catchment-scale soil moisture distribution. Here, we evaluated the potential of Sentinel-1 backscatter data assimilation (DA) to improve soil moisture and streamflow estimates. Our DA system consisted of the Noah-MP land surface model coupled to the HyMAP river routing model and the water cloud model as a backscatter observation operator. The DA system was set up at 0.01° resolution for two contrasting catchments in Belgium: (i) the Demer catchment dominated by agriculture and (ii) the Ourthe catchment dominated by mixed forests. We present the results of two experiments with an ensemble Kalman filter updating either soil moisture only or soil moisture and leaf area index (LAI). The DA experiments covered the period from January 2015 through August 2021 and were evaluated with independent rainfall error estimates based on station data, LAI from optical remote sensing, soil moisture retrievals from passive microwave observations, and streamflow measurements. Our results indicate that the assimilation of Sentinel-1 backscatter observations can partly correct errors in surface soil moisture due to rainfall errors and overall improve surface soil moisture estimates. However, updating soil moisture and LAI simultaneously did not bring any benefit over updating soil moisture only. Our results further indicate that streamflow estimates can be improved through Sentinel-1 DA in a catchment with strong soil moisture–runoff coupling, as observed for the Ourthe catchment, suggesting that there is potential for Sentinel-1 DA even for forested catchments.

Significance Statement

The purpose of this study is to improve streamflow estimation by integrating soil moisture information from satellite observations into a hydrological modeling framework. This is important preparatory work for operational centers that are responsible for producing the most accurate flood forecasts for the society. Our results provide new insights into how and where streamflow forecasting could benefit from high-spatial-resolution Sentinel-1 radar backscatter observations.

Open access
Peter E. Goble
and
Russ S. Schumacher

Abstract

Annual spring and summer runoff from western Colorado is relied upon by 40 million people, six states, and two countries. Cool season precipitation and snowpack have historically been robust predictors of seasonal runoff in western Colorado. Forecasts made with this information allow water managers to plan for the season ahead. Antecedent hydrological conditions, such as root zone soil moisture and groundwater storage, and weather conditions following peak snowpack also impact seasonal runoff. The roles of such factors were scrutinized in 2020 and 2021: seasonal runoff was much lower than expectations based on snowpack values alone. We investigate the relative importance of meteorological and hydrological conditions occurring before and after the snowpack season in predicting seasonal runoff in western Colorado. This question is critical because the most effective investment strategy for improving forecasts depends on if errors arise before or after the snowpack season. This study is conducted using observations from the Snow Telemetry Network, root zone soil moisture and groundwater data from the Western Land Data Assimilation Systems, and a random forest–based statistical forecasting framework. We find that on average, antecedent root zone soil moisture and groundwater storage values do not add significant skill to seasonal water supply forecasts in western Colorado. In contrast, using precipitation and temperature data after the time of peak snowpack improves water supply forecasts significantly. The 2020 and 2021 runoffs were hampered by dry conditions both before and after the snowpack season. Both antecedent soil moisture and spring/summer precipitation data improved water supply forecast accuracy in these years.

Significance Statement

Seasonal water supply forecasts in western Colorado are highly valuable because spring and summer runoff from this region helps support the water supply of 40 million people. Accurate forecasts improve the management of the region’s water. Heavy investments have been made in improving our ability to monitor antecedent hydrological conditions in western Colorado, such as root zone soil moisture and groundwater. However, results from this study indicate that the largest source of uncertainty in western Colorado runoff forecasts is future weather. Therefore, improved subseasonal-to-seasonal weather forecasts for western Colorado are what is most needed to improve regional water supply forecasts, and the ability to properly manage western Colorado water.

Open access
Zhi-Weng Chua
,
Yuriy Kuleshov
,
Andrew B. Watkins
,
Suelynn Choy
, and
Chayn Sun

Abstract

Satellites provide a useful way of estimating rainfall where the availability of in situ data is low but their indirect nature of estimation means there can be substantial biases. Consequently, the assimilation of in situ data is an important step in improving the accuracy of the satellite rainfall analysis. The effectiveness of this step varies with gauge density, and this study investigated the effectiveness of statistical interpolation (SI), also known as optimal interpolation (OI), on a monthly time scale when gauge density is extremely low using Papua New Guinea (PNG) as a study region. The topography of the region presented an additional challenge to the algorithm. An open-source implementation of SI was developed on Python 3 and confirmed to be consistent with an existing implementation, addressing a lack of open-source implementation for this classical algorithm. The effectiveness of the analysis produced by this algorithm was then compared to the pure satellite analysis over PNG from 2001 to 2014. When performance over the entire study domain was considered, the improvement from using SI was close to imperceptible because of the small number of stations available for assimilation and the small radius of influence of each station (imposed by the topography present in the domain). However, there was still value in using OI as performance around each of the stations was noticeably improved, with the error consistently being reduced along with a general increase in the correlation metric. Furthermore, in an operational context, the use of OI provides an important function of ensuring consistency between in situ data and the gridded analysis.

Significance Statement

The blending of satellite and gauge rainfall data through a process known as statistical interpolation (SI) is known to be capable of producing a more accurate dataset that facilitates better estimation of rainfall. However, the performance of this algorithm over a domain such as Papua New Guinea, where gauge density is extremely low, is not often explored. This study reveals that, although an improvement over the entire Papua New Guinea domain was slight, the algorithm is still valuable as there was a consistent improvement around the stations. Additionally, an adaptable and open-source version of the algorithm is provided, allowing users to blend their own satellite and gauge data and create better geospatial datasets for their own purposes.

Open access