Browse

You are looking at 1 - 7 of 7 items for :

  • Progress in Advancing Drought Monitoring and Prediction x
  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All
David M. Mocko
,
Sujay V. Kumar
,
Christa D. Peters-Lidard
, and
Shugong Wang

Abstract

This study presents an evaluation of the impact of vegetation conditions on a land surface model (LSM) simulation of agricultural drought. The Noah-MP LSM is used to simulate water and energy fluxes and states, which are transformed into drought categories using percentiles over the continental United States from 1979 to 2017. Leaf area index (LAI) observations are assimilated into the dynamic vegetation scheme of Noah-MP. A weekly operational drought monitor (the U.S. Drought Monitor) is used for the evaluation. The results show that LAI assimilation into Noah-MP’s dynamic vegetation scheme improves the model’s ability to represent drought, particularly over cropland areas. LAI assimilation improves the simulation of the drought category, detection of drought conditions, and reduces the instances of drought false alarms. The assimilation of LAI in these locations not only corrects model errors in the simulation of vegetation, but also can help to represent unmodeled physical processes such as irrigation toward improved simulation of agricultural drought.

Full access
Lu Su
,
Qian Cao
,
Mu Xiao
,
David M. Mocko
,
Michael Barlage
,
Dongyue Li
,
Christa D. Peters-Lidard
, and
Dennis P. Lettenmaier

Abstract

We examine the drought variability over the conterminous United States (CONUS) for 1915–2018 using the Noah-MP land surface model. We examine different model options on drought reconstruction, including optional representation of groundwater and dynamic vegetation phenology. Over our 104-yr reconstruction period, we identify 12 great droughts that each covered at least 36% of CONUS and lasted for at least 5 months. The great droughts tend to have smaller areas when groundwater and/or dynamic vegetation are included in the model configuration. We detect a small decreasing trend in dry area coverage over CONUS in all configurations. We identify 45 major droughts in the baseline (with a dry area coverage greater than 23.6% of CONUS) that are, on average, somewhat less severe than great droughts. We find that representation of groundwater tends to increase drought duration for both great and major droughts, primarily by leading to earlier drought onset (some due to short-lived recovery from a previous drought) or later demise (groundwater anomalies lag precipitation anomalies). In contrast, representation of dynamic vegetation tends to shorten major droughts duration, primarily due to earlier drought demise (closed stoma or dead vegetation reduces ET loss during droughts). On a regional basis, the U.S. Southwest (Southeast) has the longest (shortest) major drought durations. Consistent with earlier work, dry area coverage in all subregions except the Southwest has decreased. The effects of groundwater and dynamic vegetation vary regionally due to differences in groundwater depths (hence connectivity with the surface) and vegetation types.

Full access
Wen-Ying Wu
,
Zong-Liang Yang
, and
Michael Barlage

Abstract

Texas is subject to severe droughts, including the record-breaking one in 2011. To investigate the critical hydrometeorological processes during drought, we use a land surface model, Noah-MP, to simulate water availability and investigate the causes of the record drought. We conduct a series of experiments with runoff schemes, vegetation phenology, and plant rooting depth. Observation-based terrestrial water storage, evapotranspiration, runoff, and leaf area index are used to compare with results from the model. Overall, the results suggest that using different parameterizations can influence the modeled water availability, especially during drought. The drought-induced vegetation responses not only interact with water availability but also affect the ground temperature. Our evaluation shows that Noah-MP with a groundwater scheme produces a better temporal relationship in terrestrial water storage compared with observations. Leaf area index from dynamic vegetation is better simulated in wet years than dry years. Reduction of positive biases in runoff and reduction of negative biases in evapotranspiration are found in simulations with groundwater, dynamic vegetation, and deeper rooting zone depth. Multiparameterization experiments show the uncertainties of drought monitoring and provide a mechanistic understanding of disparities in dry anomalies.

Full access
Yaling Liu
,
Dongdong Chen
,
Soukayna Mouatadid
,
Xiaoliang Lu
,
Min Chen
,
Yu Cheng
,
Zhenghui Xie
,
Binghao Jia
,
Huan Wu
, and
Pierre Gentine

Abstract

Soil moisture (SM) links the water and energy cycles over the land–atmosphere interface and largely determines ecosystem functionality, positioning it as an essential player in the Earth system. Despite its importance, accurate estimation of large-scale SM remains a challenge. Here we leverage the strength of neural network (NN) and fidelity of long-term measurements to develop a daily multilayer cropland SM dataset for China from 1981 to 2013, implemented for a range of different cropping patterns. The training and testing of the NN for the five soil layers (0–50 cm, 10-cm depth each) yield R 2 values of 0.65–0.70 and 0.64–0.69, respectively. Our analysis reveals that precipitation and soil properties are the two dominant factors determining SM, but cropping pattern is also crucial. In addition, our simulations of alternative cropping patterns indicate that winter wheat followed by fallow will largely alleviate the SM depletion in most parts of China. On the other hand, cropping patterns of fallow in the winter followed by maize/soybean seem to further aggravate SM decline in the Huang-Huai-Hai region and southwestern China, relative to prevalent practices of double cropping. This may be due to their low soil porosity, which results in more soil water drainage, as opposed to the case that winter crop roots help maintain SM. This multilayer cropland SM dataset with granularity of cropping patterns provides an important alternative and is complementary to modeled and satellite-retrieved products.

Full access
Yizhou Zhuang
,
Amir Erfanian
, and
Rong Fu

Abstract

Although the influence of sea surface temperature (SST) forcing and large-scale teleconnection on summer droughts over the U.S. Great Plains has been suggested for decades, the underlying mechanisms are still not fully understood. Here we show a significant correlation between low-level moisture condition over the U.S. Southwest in spring and rainfall variability over the Great Plains in summer. Such a connection is due to the strong influence of the Southwest dryness on the zonal moisture advection to the Great Plains from spring to summer. This advection is an important contributor for the moisture deficit during spring to early summer, and so can initiate warm season drought over the Great Plains. In other words, the well-documented influence of cold season Pacific SST on the Southwest rainfall in spring, and the influence of the latter on the zonal moisture advection to the Great Plains from spring to summer, allows the Pacific climate variability in winter and spring to explain over 35% of the variance of the summer precipitation over the Great Plains, more than that can be explained by the previous documented west Pacific–North America (WPNA) teleconnection forced by tropical Pacific SST in early summer. Thus, this remote land surface feedback due to the Southwest dryness can potentially improve the predictability of summer precipitation and drought onsets over the Great Plains.

Full access
Chul-Su Shin
,
Bohua Huang
,
Paul A. Dirmeyer
,
Subhadeep Halder
, and
Arun Kumar

Abstract

In addition to remote SST forcing, realistic representation of land forcing (i.e., soil moisture) over the United States is critical for a prediction of U.S. severe drought events approximately one season in advance. Using “identical twin” experiments with different land initial conditions (ICs) in the 32-yr (1979–2010) CFSv2 reforecasts (NASA GLDAS-2 reanalysis versus NCEP CFSR), sensitivity and skill of U.S. drought predictions to land ICs are evaluated. Although there is no outstanding performer between the two sets of forecasts with different land ICs, each set shows greater skill in some regions, but their locations vary with forecast lead time and season. The 1999 case study demonstrates that although a pattern of below-normal SSTs in the Pacific in the fall and winter is realistically reproduced in both reforecasts, GLDAS-2 land initial states display a stronger east–west gradient of soil moisture, particularly drier in the eastern United States and more consistent with observations, leading to warmer surface temperature anomalies over the United States. Anomalies lasting for one season are accompanied by more persistent barotropic (warm core) anomalous high pressure over CONUS, which results in better prediction skill of this drought case up to 4 months in advance in the reforecasts with GLDAS-2 land ICs. Therefore, it is essential to minimize the uncertainty of land initial states among the current land analyses for improving U.S. drought prediction on seasonal time scales.

Full access
Chul-Su Shin
,
Paul A. Dirmeyer
,
Bohua Huang
,
Subhadeep Halder
, and
Arun Kumar

Abstract

The NCEP CFSv2 ensemble reforecasts initialized with different land surface analyses for the period of 1979–2010 have been conducted to assess the effect of uncertainty in land initial states on surface air temperature prediction. The two observation-based land initial states are adapted from the NCEP CFS Reanalysis (CFSR) and the NASA GLDAS-2 analysis; atmosphere, ocean, and ice initial states are identical for both reforecasts. This identical-twin experiment confirms that the prediction skill of surface air temperature is sensitive to the uncertainty of land initial states, especially in soil moisture and snow cover. There is no distinct characteristic that determines which set of the reforecasts performs better. Rather, the better performer varies with the lead week and location for each season. Estimates of soil moisture between the two land initial states are significantly different with an apparent north–south contrast for almost all seasons, causing predicted surface air temperature discrepancies between the two sets of reforecasts, particularly in regions where the magnitude of initial soil moisture difference lies in the top quintile. In boreal spring, inconsistency of snow cover between the two land initial states also plays a critical role in enhancing the discrepancy of predicted surface air temperature from week 5 to week 8. Our results suggest that a reduction of the uncertainty in land surface properties among the current land surface analyses will be beneficial to improving the prediction skill of surface air temperature on subseasonal time scales. Implications of a multiple land surface analysis ensemble are also discussed.

Full access