Browse

You are looking at 1 - 10 of 23 items for :

  • Plains Elevated Convection At Night (PECAN) x
  • Monthly Weather Review x
  • Refine by Access: Content accessible to me x
Clear All
James N. Marquis, Adam C. Varble, Paul Robinson, T. Connor Nelson, and Katja Friedrich

Abstract

Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of (i) the mesoscale and boundary layer flow, and (ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary, or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3–5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1–3 km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment.

Open access
Rachel L. Miller, Conrad L. Ziegler, and Michael I. Biggerstaff

Abstract

This case study analyzes a nocturnal mesoscale convective system (MCS) that was observed on 25–26 June 2015 in northeastern Kansas during the Plains Elevated Convection At Night (PECAN) project. Over the course of the observational period, a broken line of elevated nocturnal convective cells initiated around 0230 UTC on the cool side of a stationary front and subsequently merged to form a quasi-linear MCS that later developed strong, surface-based outflow and a trailing stratiform region. This study combines radar observations with mobile and fixed mesonet and sounding data taken during PECAN to analyze the kinematics and thermodynamics of the MCS from 0300 to 0630 UTC. This study is unique in that 38 consecutive multi-Doppler wind analyses are examined over the 3.5 h observation period, facilitating a long-duration analysis of the kinematic evolution of the nocturnal MCS. Radar analyses reveal that the initial convective cells and linear MCS are elevated and sustained by an elevated residual layer formed via weak ascent over the stationary front. During upscale growth, individual convective cells develop storm-scale cold pools due to pockets of descending rear-to-front flow that are measured by mobile mesonets. By 0500 UTC, kinematic analysis and mesonet observations show that the MCS has a surface-based cold pool and that convective line updrafts are ingesting parcels from below the stable layer. In this environment, the elevated system has become surface based since the cold pool lifting is sufficient for surface-based parcels to overcome the CIN associated with the frontal stable layer.

Free access
Matthew D. Parker, Brett S. Borchardt, Rachel L. Miller, and Conrad L. Ziegler

Abstract

The 25–26 June 2015 nocturnal mesoscale convective system (MCS) from the Plains Elevated Convection at Night (PECAN) field project produced severe winds within an environment that might customarily be associated with elevated convection. This work incorporates both a full-physics real-world simulation and an idealized single-sounding simulation to explore the MCS’s evolution. Initially, the simulated convective systems were elevated, being maintained by wavelike disturbances and lacking surface cold pools. As the systems matured, surface outflows began to appear, particularly where heavy precipitation was occurring, with air in the surface cold pools originating from up to 4–5 km AGL. Via this progression, the MCSs exhibited a degree of self-organization (i.e., structures that are dependent upon an MCS’s particular history). The cold pools eventually became 1.5–3.5 km deep, by which point passive tracers revealed that the convection was at least partly surface based. Soon after becoming surface based, both simulations produced severe surface winds, the strongest of which were associated with embedded low-level mesovortices and their attendant outflow surges and bowing segments. The origin of the simulated mesovortices was likely the downward tilting of system-generated horizontal vorticity (from baroclinity, but also possibly friction) within the simulated MCSs’ outflow, as has been argued in a number of previous studies. Taken altogether, it appears that severe nocturnal MCSs may often resemble their cold pool-driven, surface-based afternoon counterparts.

Free access
Tammy M. Weckwerth and Ulrike Romatschke

Abstract

The overarching goal of the Plains Elevated Convection At Night (PECAN) field campaign was to improve understanding of the processes contributing to the nocturnal precipitation maximum in the U.S. Great Plains. This study presents the precipitation pattern surrounding PECAN and addresses the origin, timing, duration, and potential causes contributing to that pattern. It is shown that the precipitation occurs most frequently at night, as expected. The maximum in the precipitation pattern occurred in the northeastern portion of the PECAN radar domain. The source of the rainfall was attributed to mountain-initiated precipitation, plains-initiated precipitation, precipitation advecting over the border of the radar domain, and episodes in which different initiation categories merged together. Through the combination of mountain-initiated, border, and merged episodes, 70% of the Great Plains precipitation was caused by episodes that formed outside of the PECAN domain and propagated into the region. The remaining 30% of the precipitation was attributed to plains-initiated storms. The mountain-initiated storms formed primarily in the afternoon and typically dissipated near the mountains. For those that survived, they propagated eastward, grew upscale, and contributed 27% of the precipitation in the plains. The plains-initiated precipitation fell mostly during the afternoon but also contributed to overnight rainfall and those locally triggered systems tended to be relatively smaller and shorter lived. For the top 10% rain-producing events, composite reanalysis fields showed that synoptic-scale features influenced the precipitation pattern and timing: an approaching trough established southwesterly moist flow throughout the region and a nocturnal low-level jet transported moisture to its terminus in the northeast corner of the PECAN domain.

Free access
Samuel K. Degelia, Xuguang Wang, and David J. Stensrud

Abstract

Numerical weather prediction models often fail to correctly forecast convection initiation (CI) at night. To improve our understanding of such events, researchers collected a unique dataset of thermodynamic and kinematic remote sensing profilers as part of the Plains Elevated Convection at Night (PECAN) experiment. This study evaluates the impacts made to a nocturnal CI forecast on 26 June 2015 by assimilating a network of atmospheric emitted radiance interferometers (AERIs), Doppler lidars, radio wind profilers, high-frequency rawinsondes, and mobile surface observations using an advanced, ensemble-based data assimilation system. Relative to operational forecasts, assimilating the PECAN dataset improves the timing, location, and orientation of the CI event. Specifically, radio wind profilers and rawinsondes are shown to be the most impactful instrument by enhancing the moisture advection into the region of CI in the forecast. Assimilating thermodynamic profiles collected by the AERIs increases midlevel moisture and improves the ensemble probability of CI in the forecast. The impacts of assimilating the radio wind profilers, AERI retrievals, and rawinsondes remain large throughout forecasting the growth of the CI event into a mesoscale convective system. Assimilating Doppler lidar and surface data only slightly improves the CI forecast by enhancing the convergence along an outflow boundary that partially forces the nocturnal CI event. Our findings suggest that a mesoscale network of profiling and surface instruments has the potential to greatly improve short-term forecasts of nocturnal convection.

Full access
Stacey M. Hitchcock, Russ S. Schumacher, Gregory R. Herman, Michael C. Coniglio, Matthew D. Parker, and Conrad L. Ziegler

Abstract

During the Plains Elevated Convection at Night (PECAN) field campaign, 15 mesoscale convective system (MCS) environments were sampled by an array of instruments including radiosondes launched by three mobile sounding teams. Additional soundings were collected by fixed and mobile PECAN integrated sounding array (PISA) groups for a number of cases. Cluster analysis of observed vertical profiles established three primary preconvective categories: 1) those with an elevated maximum in equivalent potential temperature below a layer of potential instability; 2) those that maintain a daytime-like planetary boundary layer (PBL) and nearly potentially neutral low levels, sometimes even well after sunset despite the existence of a southerly low-level wind maximum; and 3) those that are potentially neutral at low levels, but have very weak or no southerly low-level winds. Profiles of equivalent potential temperature in elevated instability cases tend to evolve rapidly in time, while cases in the potentially neutral categories do not. Analysis of composite Rapid Refresh (RAP) environments indicate greater moisture content and moisture advection in an elevated layer in the elevated instability cases than in their potentially neutral counterparts. Postconvective soundings demonstrate significantly more variability, but cold pools were observed in nearly every PECAN MCS case. Following convection, perturbations range between −1.9 and −9.1 K over depths between 150 m and 4.35 km, but stronger, deeper stable layers lead to structures where the largest cold pool temperature perturbation is observed above the surface.

Full access
Elizabeth N. Smith, Joshua G. Gebauer, Petra M. Klein, Evgeni Fedorovich, and Jeremy A. Gibbs

Abstract

During the 2015 Plains Elevated Convection at Night (PECAN) field campaign, several nocturnal low-level jets (NLLJs) were observed with integrated boundary layer profiling systems at multiple sites. This paper gives an overview of selected PECAN NLLJ cases and presents a comparison of high-resolution observations with numerical simulations using the Weather Research and Forecasting (WRF) Model. Analyses suggest that simulated NLLJs typically form earlier than the observed NLLJs. They are stronger than the observed counterparts early in the event, but weaker than the observed NLLJs later in the night. However, sudden variations in the boundary layer winds, height of the NLLJ maximum and core region, and potential temperature fields are well captured by the WRF Model. Simulated three-dimensional fields are used for a more focused analysis of PECAN NLLJ cases. While previous studies often related changes in the thermal structure of the nocturnal boundary layer and sudden mixing events to local features, we hypothesize that NLLJ spatial evolution plays an important role in such events. The NLLJ is shown to have heterogeneous depth, wind speed, and wind direction. This study offers detailed documentation of the heterogeneous NLLJ moving down the slope of the Great Plains overnight. As the NLLJ evolves, westerly advection becomes significant. Buoyancy-related mechanisms are proposed to explain NLLJ heterogeneity and down-slope motion. Spatial and temporal heterogeneity of the NLLJ is suggested as a source of the often observed and simulated updrafts during PECAN cases and as a possible mechanism for nocturnal convection initiation. The spatial and temporal characteristics of the NLLJ are interconnected and should not be treated independently.

Full access
Aaron Johnson and Xuguang Wang

Abstract

Four case studies from the Plains Elevated Convection at Night (PECAN) field experiment are used to investigate the impacts of horizontal and vertical resolution, and vertical mixing parameterization, on predictions of bore structure and upscale impacts of bores on their mesoscale environment. The reduction of environmental convective inhibition (CIN) created by the bore is particularly emphasized. Simulations are run with horizontal grid spacings ranging from 250 to 1000 m, as well as 50 m for one case study, different vertical level configurations, and different closure models for the vertical turbulent mixing at 250-m horizontal resolution. The 11 July case study was evaluated in greatest detail because it was the best observed case and has been the focus of a previous study. For this case, it is found that 250-m grid spacing improves upon 1-km grid spacing, LES configuration provides further improvement, and enhanced low-level vertical resolution also provides further improvement in terms of qualitative agreement between simulated and observed bore structure. Reducing LES grid spacing further to 50 m provided very little additional advantage. Only the LES experiments properly resolved the upscale influence of reduced low-level CIN. Expanding on the 11 July case study, three other cases from PECAN with diverse observed bore structures were also evaluated. Similar to the 11 July case, enhancing the horizontal and vertical grid spacings, and using the LES closure model for vertical turbulent mixing, all contributed to improved simulations of both the bores themselves and the larger-scale modification of CIN to varying degrees on different cases.

Full access
David M. Loveless, Timothy J. Wagner, David D. Turner, Steven A. Ackerman, and Wayne F. Feltz

Abstract

Atmospheric bores have been shown to have a role in the initiation and maintenance of elevated convection. Previous observational studies of bores have been case studies of more notable events. However, this creates a selection bias toward extraordinary cases, while discussions of the differences between bores that favor convective initiation and maintenance and bores that do not are lacking from the literature. This study attempts to fill that gap by analyzing a high-temporal-resolution thermodynamic profile composite of eight bores observed by multiple platforms during the Plains Elevated Convection at Night (PECAN) campaign in order to assess the impact of bores on the environment. The time–height cross section of the potential temperature composite displays quasi-permanent parcel displacements up to 900 m with the bore passage. Low-level lifting is shown to weaken the capping inversion and reduce convective inhibition (CIN) and the level of free convection (LFC). Additionally, low-level water vapor increases by about 1 g kg−1 in the composite mean. By assessing variability across the eight cases, it is shown that increases in low-level water vapor result in increases to convective available potential energy (CAPE), while drying results in decreased CAPE. Most cases resulted in decreased CIN and LFC height with the bore passage, but only some cases resulted in increased CAPE. This suggests that bores will increase the potential for convective initiation, but future research should be directed toward better understanding cases that result in increased CAPE as those are the types of bores that will increase severity of convection.

Full access
Manda B. Chasteen, Steven E. Koch, and David B. Parsons

Abstract

Nocturnal mesoscale convective systems (MCSs) frequently develop over the Great Plains in the presence of a nocturnal low-level jet (LLJ), which contributes to convective maintenance by providing a source of instability, convergence, and low-level vertical wind shear. Although these nocturnal MCSs often dissipate during the morning, many persist into the following afternoon despite the cessation of the LLJ with the onset of solar heating. The environmental factors enabling the postsunrise persistence of nocturnal convection are currently not well understood. A thorough investigation into the processes supporting the longevity and daytime persistence of an MCS was conducted using routine observations, RAP analyses, and a WRF-ARW simulation. Elevated nocturnal convection developed in response to enhanced frontogenesis, which quickly grew upscale into a severe quasi-linear convective system (QLCS). The western portion of this QLCS reorganized into a bow echo with a pronounced cold pool and ultimately an organized leading-line, trailing-stratiform MCS as it moved into an increasingly unstable environment. Differential advection resulting from the interaction of the nocturnal LLJ with the topography of west Texas established considerable heterogeneity in moisture, CAPE, and CIN, which influenced the structure and evolution of the MCS. An inland-advected moisture plume significantly increased near-surface CAPE during the nighttime over central Texas, while the environment over southeastern Texas abruptly destabilized following the commencement of surface heating and downward moisture transport. The unique topography of the southern plains and the close proximity to the Gulf of Mexico provided an environment conducive to the postsunrise persistence of the organized MCS.

Full access