Browse

You are looking at 1 - 10 of 37 items for :

  • Years of the Maritime Continent x
  • Refine by Access: Content accessible to me x
Clear All
Joshua Chun Kwang Lee, Anurag Dipankar, and Xiang-Yu Huang

Abstract

The diurnal cycle is the most prominent mode of rainfall variability in the tropics, governed mainly by the strong solar heating and land–sea interactions that trigger convection. Over the western Maritime Continent, complex orographic and coastal effects can also play an important role. Weather and climate models often struggle to represent these physical processes, resulting in substantial model biases in simulations over the region. For numerical weather prediction, these biases manifest themselves in the initial conditions, leading to phase and amplitude errors in the diurnal cycle of precipitation. Using a tropical convective-scale data assimilation system, we assimilate 3-hourly radiosonde data from the pilot field campaign of the Years of Maritime Continent, in addition to existing available observations, to diagnose the model biases and assess the relative impacts of the additional wind, temperature, and moisture information on the simulated diurnal cycle of precipitation over the western coast of Sumatra. We show how assimilating such high-frequency in situ observations can improve the simulated diurnal cycle, verified against satellite-derived precipitation, radar-derived precipitation, and rain gauge data. The improvements are due to a better representation of the sea breeze and increased available moisture in the lowest 4 km prior to peak convection. Assimilating wind information alone was sufficient to improve the simulations. We also highlight how during the assimilation, certain multivariate background error constraints and moisture addition in an ad hoc manner can negatively impact the simulations. Other approaches should be explored to better exploit information from such high-frequency observations over this region.

Open access
Biao Geng and Masaki Katsumata

Abstract

In this study, we examined the variations of precipitation morphology and rainfall in relation to the simultaneous passages of a Madden–Julian oscillation (MJO) event and convectively coupled equatorial waves (CCEWs) observed during the Years of the Maritime Continent pilot study. We utilized globally merged infrared brightness temperature data and the radiosonde and radar data observed aboard the Research Vessel Mirai at 4°4′S, 101°54′E. As well as the observed MJO event, equatorial Rossby waves (ERWs), Kelvin waves (KWs), and mixed Rossby–gravity waves (MRGWs) were identified. The radar data exhibited high-frequency variation, mainly caused by KWs and MRGWs, and low-frequency variation, mainly caused by the MJO and ERWs. The MRGWs predominantly modulated convective echo areas and both convective and stratiform volumetric rainfall. In contrast, the MJO event had little influence on the variance of convective echoes. Moreover, stratiform echo areas and volumetric rainfall were more strongly modulated by the combined effects of the MJO, ERWs, KWs, and MRGWs than their convective counterparts. The intense development of stratiform echo areas and volumetric rainfall was coherent with the superimposition of the active phases of the MJO event and all the analyzed CCEWs. The strongest development and a significant reduction of convective echo-top heights before and after the peak MJO date, respectively, were coherent with the passages of ERWs and MRGWs, which were the dominant wave types in modulating echo-top heights. Thus, it appears that the superimposition of the CCEWs on the MJO event exerted complex modulations on the convective activities within the MJO event.

Open access
Ya Yang, Xiang Li, Jing Wang, and Dongliang Yuan

Abstract

The North Equatorial Subsurface Current (NESC) is a subthermocline ocean current uncovered recently in the tropical Pacific Ocean, flowing westward below the North Equatorial Countercurrent. In this study, the dynamics of the seasonal cycle of this current are studied using historical shipboard acoustic Doppler current profiler measurements and Argo absolute geostrophic currents. Both data show a westward current at the depths of 200–1000 m between 4° and 6°N, with a typical core speed of about 5 and 2 cm s−1, respectively. The subsurface current originates in the eastern Pacific, with its core descending to deeper isopycnal surfaces and moving to the equator as it flows westward. The zonal velocity of the NESC shows pronounced seasonal variability, with the annual-cycle harmonics of vertical isothermal displacement and zonal velocity presenting characters of vertically propagating baroclinic Rossby waves. A simple analytical Rossby wave model is employed to simulate the propagation of the seasonal variations of the westward zonal currents successfully, which is the basis for exploring the wind forcing dynamics. The results suggest that the wind curl forcing in the central-eastern basin between 170° and 140°W associated with the meridional movement of the intertropical convergence zone dominates the NESC seasonal variability in the western Pacific, with the winds west of 170°W and east of 140°W playing a minor role in the forcing.

Free access
Ming Feng, Yongliang Duan, Susan Wijffels, Je-Yuan Hsu, Chao Li, Huiwu Wang, Yang Yang, Hong Shen, Jianjun Liu, Chunlin Ning, and Weidong Yu

Abstract

Sea surface temperatures (SSTs) north of Australia in the Indonesian–Australian Basin are significantly influenced by Madden–Julian oscillation (MJO), an eastward-moving atmospheric disturbance that traverses the globe in the tropics. The region also has large-amplitude diurnal SST variations, which may influence the air–sea heat and moisture fluxes, that provide feedback to the MJO evolution. During the 2018/19 austral summer, a field campaign aiming to better understand the influences of air–sea coupling on the MJO was conducted north of Australia in the Indonesian–Australian Basin. Surface meteorology from buoy observations and upper-ocean data from autonomous fast-profiling float observations were collected. Two MJO convective phases propagated eastward across the region in mid-December 2018 and late January 2019 and the second MJO was in conjunction with a tropical cyclone development. Observations showed that SST in the region was rather sensitive to the MJO forcing. Air–sea heat fluxes warmed the SST throughout the 2018/19 austral summer, punctuated by the MJO activities, with a 2°–3°C drop in SST during the two MJO events. Substantial diurnal SST variations during the suppressed phases of the MJOs were observed, and the near-surface thermal stratifications provided positive feedback for the peak diurnal SST amplitude, which may be a mechanism to influence the MJO evolution. Compared to traditionally vessel-based observation programs, we have relied on fast-profiling floats as the main vehicle in measuring the upper-ocean variability from diurnal to the MJO time scales, which may pave the way for using cost-effective technology in similar process studies.

Free access
Jieshun Zhu, Arun Kumar, and Wanqiu Wang

Abstract

This study revisits MJO predictability based on the “perfect model” approach with a contemporary model. Experiments are performed to address the reasons for substantial uncertainties in current estimates of MJO predictability, with a focus on the influence of atmospheric convection parameterization. Specifically, two atmospheric convection schemes are applied for experiments with the NOAA Climate Forecast System, version 2 (CFSv2). MJO potential predictability and prediction skill are assessed, with MJO indices taken as the first two principal components of the combined fields of near-equatorially averaged 200-hPa zonal wind, 850-hPa zonal wind, and outgoing longwave radiation at the top of the atmosphere. Analyses indicate that the convection scheme alone can have substantial influence on the estimate of MJO predictability, with estimates differing by as much as 15 days. Further diagnostics suggest that the shorter predictability with one convection scheme is mainly caused by too weak of an MJO signal. The choice of atmospheric convection scheme also exerts effects on the phase dependency of MJO predictability, and the “Maritime Continent prediction barrier” is identified to be more evident with one convection scheme than with the other.

Free access
D. Argüeso, R. Romero, and V. Homar

Abstract

The Maritime Continent is the largest archipelago in the world and a region of intense convective activity that influences Earth’s general circulation. The region features one of the warmest oceans, very complex topography, dense vegetation, and an intricate configuration of islands, which together result in very specific precipitation characteristics, such as a marked diurnal cycle. Atmospheric models poorly resolve deep convection processes that generate rainfall in the archipelago and show fundamental errors in simulating precipitation. Spatial resolution and the use of convective schemes required to represent subgrid convective circulations have been pointed out as culprits of these errors. However, models running at the kilometer scale explicitly resolve most convective systems and thus are expected to contribute to solve the challenge of accurately simulating rainfall in the Maritime Continent. Here we investigate the differences in simulated precipitation characteristics for different representations of convection, including parameterized and explicit, and at various spatial resolutions. We also explore the vertical structure of the atmosphere in search of physical mechanisms that explain the main differences identified in the rainfall fields across model experiments. Our results indicate that both increased resolution and representing convection explicitly are required to produce a more realistic simulation of precipitation features, such as a correct diurnal cycle both over land and ocean. We found that the structures of deep and shallow clouds are the main differences across experiments and thus they are responsible for differences in the timing and spatial distribution of rainfall patterns in the various convection representation experiments.

Open access
James H. Ruppert Jr., Xingchao Chen, and Fuqing Zhang

Abstract

Long-lived, zonally propagating diurnal rainfall disturbances are a highly pronounced and common feature in the Maritime Continent (MC). A recent study argues that these disturbances can be explained as diurnally phase-locked gravity waves. Here we explore the origins of these waves through regional cloud-permitting numerical model experiments. The gravity waves are reproduced and isolated in the model framework through the combined use of realistic geography and diurnally cyclic lateral boundary conditions representative of both characteristic easterly and westerly background zonal flow regimes. These flow regimes are characteristic of the Madden–Julian oscillation (MJO) suppressed and active phase in the MC, respectively. Tests are conducted wherein Borneo, Sumatra, or both islands and/or their orography are removed. These tests imply that the diurnal gravity waves are excited and maintained directly by latent heating from the vigorous mesoscale convective systems (MCSs) that form nocturnally in both Borneo and Sumatra. Removing orography has only a secondary impact on both the MCSs and the gravity waves, implying that it is not critical to these waves. We therefore hypothesize that diurnal gravity waves are fundamentally driven by mesoscale organized deep convection, and are only sensitive to orography to the measure that the convection is affected by the orography and its mesoscale flows. Factor separation further reveals that the nonlinear interaction of synchronized diurnal cycles in Sumatra and Borneo slightly amplifies this gravity wave mode compared to if either island existed in isolation. This nonlinear feedback appears most prominently at longitudes directly between the two islands.

Free access
Benjamin A. Toms, Susan C. van den Heever, Emily M. Riley Dellaripa, Stephen M. Saleeby, and Eric D. Maloney

Abstract

While the boreal summer Madden–Julian oscillation (MJO) is commonly defined as a planetary-scale disturbance, the convective elements that constitute its cloud dipole exhibit pronounced variability in their morphology. We therefore investigate the relationship between the intraseasonal cloud anomaly of the MJO and the convective elements that populate its interior by simulating a boreal summer MJO event over the Maritime Continent using a cloud-resolving model. A progressive relationship between convective cell morphology and the MJO within the convectively enhanced region of the MJO was identified and characterized as follows: anomalously long-lasting cells in the initial phases, followed by an increased number of cells in the intermediate phases, progressing into more expansive cells in the terminal phases. A progressive relationship does not seem to exist within the convectively suppressed region of the MJO within the simulated domain, however. Within the convectively enhanced region of the MJO, the progressive relationship is partially explained by the evolution of bulk atmospheric characteristics, such as instability and wind shear. Positive midlevel moisture anomalies coincide with anomalously long-lasting convective cells, which is hypothesized to further cascade into an increase in convective cell volume, although variability in the number of convective cells seems to be related to an unidentified variable. This intraseasonal relationship between convective cell morphology and the boreal summer MJO within the Maritime Continent may have broader implications for the large-scale structure and evolution of the MJO, related to both convective moistening and cloud-radiative feedbacks.

Free access
Xiang Li, Dongliang Yuan, Zheng Wang, Yao Li, Corry Corvianawatie, Dewi Surinati, Asep Sandra, Ahmad Bayhaqi, Praditya Avianto, Edi Kusmanto, Dirham Dirhamsyah, and Zainal Arifin

Abstract

The ocean currents in the Halmahera Sea are studied using a subsurface mooring deployed in the Jailolo Strait from November 2015 to October 2017. The subtidal currents of the mooring measurements are characterized by a two-layer system, with the current variability below about 200 m in opposite phases to that in the upper layer. The mean along-strait velocity (ASV) is toward the Indonesian seas in the whole water column, producing an estimated mean transport of 2.44 ± 0.42 Sv (1 Sv ≡ 106 m3 s−1). The errors of the transport calculation based on the single mooring measurements are estimated to be less than 15% using simulations of high-resolution ocean models. A weak current is observed to flow northward during 2017 at the bottom of the strait. The ASV variability is found to be dominated by an annual cycle both in the upper and lower layers. The total transport, however, is dominated by semiannual variability because of the cancelation of the annual transports in the upper and lower layers. The variability of the transport is suggested to be driven by the pressure difference between the Pacific Ocean and the Indonesian seas, as evidenced by the agreement between the satellite pressure gradient and the two-layer transports. The transport of the Jailolo Strait during the 2015/16 super El Niño is found to be nearly the same as that during the 2016 La Niña, suggesting that the interannual variability of the transport is much smaller than the seasonal cycle.

Free access
Kevin E. Trenberth and Yongxin Zhang

Abstract

The net surface energy flux is computed as a residual of the energy budget using top-of-atmosphere radiation combined with the divergence of the column-integrated atmospheric energy transports, and then used with the vertically integrated ocean heat content tendencies to compute the ocean meridional heat transports (MHTs). The mean annual cycles and 12-month running mean MHTs as a function of latitude are presented for 2000–16. Effects of the Indonesian Throughflow (ITF), associated with a net volume flow around Australia accompanied by a heat transport, are fully included. Because the ITF-related flow necessitates a return current northward in the Tasman Sea that relaxes during El Niño, the reduced ITF during El Niño may contribute to warming in the south Tasman Sea by allowing the East Australian Current to push farther south even as it gains volume from the tropical waters not flowing through the ITF. Although evident in 2015/16, when a major marine heat wave occurred, these effects can be overwhelmed by changes in the atmospheric circulation. Large interannual MHT variability in the Pacific is 4 times that of the Atlantic. Strong relationships reveal influences from the southern subtropics on ENSO for this period. At the equator, northward ocean MHT arises mainly in the Atlantic (0.75 PW), offset by the Pacific (−0.33 PW) and Indian Oceans (−0.20 PW) while the atmosphere transports energy southward (−0.35 PW). The net equatorial MHT southward (−0.18 PW) is enhanced by −0.1 PW that contributes to the greater warming of the southern (vs northern) oceans.

Open access