Browse

You are looking at 1 - 10 of 11,322 items for :

  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All
Ren-Jie Wu, Min-Hui Lo, and Bridget R. Scanlon

Abstract

The terrestrial water storage anomaly (TWSA) is a critical component of the global water cycle where improved spatiotemporal dynamics would enhance exploration of weather- and climate-linked processes. Thus, correctly simulating TWSA is essential not only for water-resource management but also for assessing feedbacks to climate through land–atmosphere interactions. Here we evaluate simulated TWSA from 25 climate models (from phase 6 of the Climate Model Intercomparison Project) through comparison with TWSA from GRACE satellite data (2003–14) in 14 river basins globally and assess causes of discrepancies by examining precipitation (P), evapotranspiration (ET), and runoff (R off) fluxes during recharge (increasing TWS) and discharge (decreasing TWS) cycles. Most models show consistent biases in seasonal amplitudes of TWS anomalies relative to GRACE output: higher modeled amplitudes in river basins in high northern latitudes and the Parana and Congo basins, and lower amplitudes in most midlatitude basins and other tropical basins. This TWSA systematic bias also exists in the previous CMIP5 simulations. Models overestimate P compared to observed P datasets in 7 out of 14 basins, which increases (decreases) seasonal storage amplitude relative to GRACE in the recharge (discharge) cycle. Overestimation (underestimation) of runoff is another common contributing factor in the discharge phase that increases (decreases) TWSA amplitudes relative to GRACE in five river basins. The results provide a comprehensive assessment of the reliability of the simulated annual range in TWSA through comparison with GRACE data that can be used to guide future model development.

Open access
Yu-Chiao Liang, Claude Frankignoul, Young-Oh Kwon, Guillaume Gastineau, Elisa Manzini, Gokhan Danabasoglu, Lingling Suo, Stephen Yeager, Yongqi Gao, Jisk J. Attema, Annalisa Cherchi, Rohit Ghosh, Daniela Matei, Jennifer V. Mecking, Tian Tian, and Ying Zhang

Abstract

To examine the atmospheric responses to Arctic sea ice variability in the Northern Hemisphere cold season (from October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily varying sea ice, sea surface temperature, and radiative forcings prescribed during the 1979–2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual covariability between sea ice extent in the Barents–Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the covariability in MMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation–like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.

Open access
Hitoshi Matsui and Mingxu Liu

Abstract

Black carbon (BC) aerosol particles in the Arctic heat the atmosphere and snow/ice surfaces and may strengthen the snow-albedo feedback that amplifies Arctic warming. Model simulations of BC concentrations in the Arctic depend strongly on the representation of microphysical processes such as aging, activation, and wet removal. Most BC modeling studies have classified BC particles into hydrophobic BC, which cannot form cloud droplets, and hydrophilic BC, which can form cloud droplets, by assuming a globally constant critical supersaturation threshold value (S thre), without considering its consistency with cloud maximum supersaturation (S max). Here we show that it is essential to consider the consistency of S thre with S max in global model simulations to reduce uncertainties in near-surface ambient BC concentrations in the Arctic. Previous studies often obtained good agreement between simulated and observed near-surface Arctic BC mass concentrations when a low S thre (~0.1%) was assumed in their models. However, this S thre may be too low (activation and wet removal of BC may be underestimated) for the Arctic, because some recent observations and our model simulations suggest that S max may actually be higher (~0.3%) there. We also demonstrate that spatially varying S thre values and their consistency with S max, which previous studies did not consider, must be represented in models for more accurate estimation of BC budget in the Arctic. Because both S max and BC-aging speed depend on climatic conditions, our findings are an important step toward better simulations of BC impacts on past, present, and future Arctic climates.

Open access
Jane E. Smyth and Yi Ming

Abstract

Monsoons emerge over a range of land surface conditions and exhibit varying physical characteristics over the seasonal cycle, from onset to withdrawal. Systematically varying the moisture and albedo parameters over land in an idealized modeling framework allows one to analyze the physics underlying the successive stages of monsoon development. To this end, we implement an isolated South American continent with reduced heat capacity but no topography in an idealized moist general circulation model. Irrespective of the local moisture availability, the seasonal cycles of precipitation and circulation over the South American monsoon sector are distinctly monsoonal with the default surface albedo. The dry land case (zero evaporation) is characterized by a shallow overturning circulation with vigorous lower-tropospheric ascent, transporting water vapor from the ocean. By contrast, with bucket hydrology or unlimited land moisture, the monsoon features deep moist convection that penetrates the upper troposphere. A series of land albedo perturbation experiments indicates that the monsoon strengthens with the net column energy flux and the near-surface moist static energy with all land moisture conditions. When the land–ocean thermal contrast is strong enough, inertial instability alone is sufficient for producing a shallow but vigorous circulation and converging a large amount of moisture from the ocean even in the absence of land moisture. Once the land is sufficiently moist, convective instability takes hold and the shallow circulation deepens. These results have implications for monsoon onset and intensification, and may elucidate the seasonal variations in how surface warming impacts tropical precipitation over land.

Open access
Free access
Gloria L. Manney, Michelle L. Santee, Zachary D. Lawrence, Krzysztof Wargan, and Michael J. Schwartz

Abstract

A comprehensive investigation of the climatology of and interannual variability and trends in the Asian summer monsoon anticyclone (ASMA) is presented, based on a novel area and moments analysis. Moments include centroid location, aspect ratio, angle, and “excess kurtosis” (measuring how far the shape is from elliptical) for an equivalent ellipse with the same area as the ASMA. Key results are robust among the three modern reanalyses studied. The climatological ASMA is nearly elliptical, with its major axis aligned along its centroid latitude and a typical aspect ratio of ~5–8. The ASMA centroid shifts northward with height, northward and westward during development, and in the opposite direction as it weakens. New evidence finding no obvious climatological bimodality in the ASMA reinforces similar suggestions from previous studies using modern reanalyses. Most trends in ASMA moments are not statistically significant. ASMA area and duration, however, increased significantly during 1979–2018; the 1958–2018 record analyzed for one reanalysis suggests that these trends may have accelerated in recent decades. ASMA centroid latitude is significantly positively (negatively) correlated with subtropical jet-core latitude (altitude), and significantly negatively correlated with concurrent ENSO; these results are consistent with and extend previous work relating monsoon intensity, ENSO, and jet shifts. ASMA area is significantly positively correlated with the multivariate ENSO index 2 months previously. These results improve our understanding of the ASMA using consistently defined diagnostics of its size, geometry, interannual variability, and trends that have not previously been analyzed.

Open access
Matthias Röthlisberger, Mauro Hermann, Christoph Frei, Flavio Lehner, Erich M. Fischer, Reto Knutti, and Heini Wernli

Abstract

Previous studies have recognized the societal relevance of climatic extremes on the seasonal time scale and examined physical processes leading to individual high-impact extreme seasons (e.g., extremely wet or warm seasons). However, these findings have not yet been generalized beyond case studies since at any specific location only very few seasonal events of such rarity occurred in the observational record. In this concept paper, a pragmatic approach to pool seasonal extremes across space is developed and applied to investigate hot summers and cold winters in ERA-Interim and the Community Earth System Model Large Ensemble (CESM-LENS). We identify spatial extreme season objects as contiguous regions of extreme seasonal mean temperatures based on statistical modeling. Regional pooling of extreme season objects in CESM-LENS then yields considerable samples of analogs to even the most extreme ERA-Interim events. This approach offers numerous opportunities for systematically analyzing large samples of extreme seasons, and several such analyses are illustrated. We reveal a striking co-occurrence of El Niño to La Niña transitions and the largest ERA-Interim midlatitude extreme summer events. Moreover, we perform a climate model evaluation with regard to extreme season size and intensity measures and estimate how often an extreme winter like the cold North American 2013/14 winter is expected anywhere in midlatitude regions. Furthermore, we present a large set of simulated analogs to this event, which makes it possible to study commonalities and differences of their underlying physical processes. Finally, substantial but spatially varying climatological differences in the size of extreme summer and extreme winter objects are identified.

Open access
Yu Zhao, Anmin Duan, and Guoxiong Wu

Abstract

The atmospheric circulation changes dramatically over a few days before and after the onset of the South Asian monsoon in spring. It is accompanied by the annual maximum surface heating over the Tibetan Plateau. We conducted two sets of experiments with a coupled general circulation model to compare the response of atmospheric circulation and wind-driven circulation in the Indian Ocean to the thermal forcing of the Tibetan Plateau before and after the monsoon onset. The results show that the Tibetan Plateau’s thermal forcing modulates the sea surface temperature (SST) of the Indian Ocean and the meridional circulation in the upper ocean with opposite effects during these two stages. The thermal forcing of the Tibetan Plateau always induces a southwesterly response over the northern Indian Ocean and weakens the northeasterly background circulation before the monsoon onset. Subsequently, wind–evaporation feedback results in a warming SST response. Meanwhile, the oceanic meridional circulation shows offshore upwellings in the north and southward transport in the upper layer crossing the equator, sinking near 15°S. After the monsoon onset, the thermal forcing of the Tibetan Plateau accelerates the background southwesterly and introduces a cooling response to the Indian Ocean SST. The response of oceanic meridional overturning circulation is limited to the north of the equator due to the location and structural evolution of the climatological local Hadley circulation. With an acceleration of the local Walker circulation, the underlying zonal currents also show corresponding changes, including a westerly drift along the equator, downwelling near Indonesia, offshore upwelling near Somalia, and a westward undercurrent.

Open access
Zhibo Li, Ying Sun, Tim Li, Wen Chen, and Yihui Ding

Abstract

The South Asian summer monsoon (SASM) is one of the most crucial climate components in boreal summer. The future potential changes in the SASM have great importance for climate change adaption and policy setting in this populous region. To understand the SASM changes and their link with the global warming of 1.5°–5°C above the preindustrial level, we investigate the changes in the SASM circulation and precipitation based on a large-ensemble simulation conducted with Canadian Earth System Model version 2 (CanESM2). With the global mean surface temperature (GMST) increase, the large-ensemble mean of SASM circulation is projected to weaken almost linearly while the precipitation and precipitable water are projected to enhance quasi-linearly. A double anticyclone along the tropical Indian Ocean is a major anomalous circulation pattern for each additional degree of warming and is responsible for the weakening of the lower-level westerlies. The decreased upper-level land–sea thermal contrast (TCupper) is the main thermal driver for the weakening of the SASM circulation while the lower-level thermal contrast contributes little. The nonlinearly decreased TCupper is mainly related to the temperature response to the increased CO2 forcing and convection-induced latent heat release in the tropics. The increase in the SASM precipitation is mainly due to the quasi-linearly increased positive contribution of the thermodynamic component, while the dynamic component has a negative impact. Both horizontal moisture advection and moisture convergence contribute to the precipitation increase, and moisture convergence plays a dominant role. These results provide new insight that the SASM changes can be roughly scaled by the GMST changes.

Open access
Jan Streffing, Tido Semmler, Lorenzo Zampieri, and Thomas Jung

ABSTRACT

The impact of Arctic sea ice decline on the weather and climate in midlatitudes is still much debated, with observations suggesting a strong link and models a much weaker link. In this study, we use the atmospheric model OpenIFS in a set of model experiments following the protocol outlined in the Polar Amplification Model Intercomparison Project (PAMIP) to investigate whether the simulated atmospheric response to future changes in Arctic sea ice fundamentally depends on model resolution. More specifically, we increase the horizontal resolution of the model from 125 to 39 km with 91 vertical levels; in a second step, resolution is further increased to 16 km with 137 levels in the vertical. The model does produce a response to sea ice decline with a weaker midlatitude Atlantic jet and increased blocking in the high-latitude Atlantic, but no sensitivity to resolution can be detected with 100 members. Furthermore, we find that the ensemble convergence toward the mean is not impacted by the model resolutions considered here.

Open access