Browse
Abstract
Six profiling floats measured water-mass properties (T, S), horizontal velocities (u, υ), and microstructure thermal-variance dissipation rates χT in the upper ∼1 km of the Iceland and Irminger Basins in the eastern subpolar North Atlantic from June 2019 to April 2021. The floats drifted into slope boundary currents to travel counterclockwise around the basins. Pairs of velocity profiles half an inertial period apart were collected every 7–14 days. These half-inertial-period pairs are separated into subinertial eddy (sum) and inertial/semidiurnal (difference) motions. Eddy flow speeds are ∼O(0.1) m s−1 in the upper 400 m, diminishing to ∼O(0.01) m s−1 by ∼800-m depth. In late summer through early spring, near-inertial motions are energized in the surface layer and permanent pycnocline to at least 800-m depth almost simultaneously (within the 14-day temporal resolution), suggesting rapid transformation of large-horizontal-scale surface-layer inertial oscillations into near-inertial internal waves with high vertical group velocities through interactions with eddy vorticity gradients (effective β). During the same period, internal-wave vertical shear variance was 2–5 times canonical midlatitude magnitudes and dominantly clockwise-with-depth (downward energy propagation). In late spring and early summer, shear levels are comparable to canonical midlatitude values and dominantly counterclockwise-with-depth (upward energy propagation), particularly over major topographic ridges. Turbulent diapycnal diffusivities K ∼ O(10−4) m2 s−1 are an order of magnitude larger than canonical midlatitude values. Depth-averaged (10–1000 m) diffusivities exhibit factor-of-3 month-by-month variability with minima in early August.
Abstract
Six profiling floats measured water-mass properties (T, S), horizontal velocities (u, υ), and microstructure thermal-variance dissipation rates χT in the upper ∼1 km of the Iceland and Irminger Basins in the eastern subpolar North Atlantic from June 2019 to April 2021. The floats drifted into slope boundary currents to travel counterclockwise around the basins. Pairs of velocity profiles half an inertial period apart were collected every 7–14 days. These half-inertial-period pairs are separated into subinertial eddy (sum) and inertial/semidiurnal (difference) motions. Eddy flow speeds are ∼O(0.1) m s−1 in the upper 400 m, diminishing to ∼O(0.01) m s−1 by ∼800-m depth. In late summer through early spring, near-inertial motions are energized in the surface layer and permanent pycnocline to at least 800-m depth almost simultaneously (within the 14-day temporal resolution), suggesting rapid transformation of large-horizontal-scale surface-layer inertial oscillations into near-inertial internal waves with high vertical group velocities through interactions with eddy vorticity gradients (effective β). During the same period, internal-wave vertical shear variance was 2–5 times canonical midlatitude magnitudes and dominantly clockwise-with-depth (downward energy propagation). In late spring and early summer, shear levels are comparable to canonical midlatitude values and dominantly counterclockwise-with-depth (upward energy propagation), particularly over major topographic ridges. Turbulent diapycnal diffusivities K ∼ O(10−4) m2 s−1 are an order of magnitude larger than canonical midlatitude values. Depth-averaged (10–1000 m) diffusivities exhibit factor-of-3 month-by-month variability with minima in early August.
Abstract
This study investigates three-dimensional semidiurnal internal tide (IT) energetics in the vicinity of La Jolla Canyon, a steep shelf submarine canyon off the Southern California coast, with the Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS) numerical simulator. Numerical simulations show vertical structure and temporal phasing consistent with detailed field observations. ITs induce large (approximately 34 m from peak to peak) isotherm displacements and net onshore IT energy flux up to 200 W m−1. Although the net IT energy flux is onshore, the steep supercritical slope around the canyon results in strong reflection. The model provides the full life span of internal tides around the canyon, including internal tide generation, propagation, and dissipation. ITs propagate into the canyon from the south and are reflected back toward offshore from the canyon’s north side. In the inner part of the canyon, elevated mixing occurs in the middle layer due to an interaction between incident mode-1 ITs and reflected higher-mode ITs. The magnitude of IT flux, generation, and dissipation on the south side of the canyon are higher than those on the north side. An interference pattern in horizontal kinetic energy and available potential energy with a scale of approximately 20–50 km arises due to low-mode wave reflections. Our results provide new insight into IT dynamics associated with a small-scale canyon topography.
Significance Statement
Internal waves play an important role in ocean circulations and ecosystems. In particular, internal waves with frequencies of tides, known as internal tides, strongly enhance energy, heat, and mass transport in coastal oceans. This study presents internal tide dynamics in La Jolla Canyon, California, using a high-resolution numerical model. Model results show energy convergence in the canyon leading to internal tide energy dissipation and mixing. Some parts of internal tide energy reflect back offshore resulting in standing internal waves off California. This study provides new insights into internal tide dynamics and energy budgets in submarine canyons.
Abstract
This study investigates three-dimensional semidiurnal internal tide (IT) energetics in the vicinity of La Jolla Canyon, a steep shelf submarine canyon off the Southern California coast, with the Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS) numerical simulator. Numerical simulations show vertical structure and temporal phasing consistent with detailed field observations. ITs induce large (approximately 34 m from peak to peak) isotherm displacements and net onshore IT energy flux up to 200 W m−1. Although the net IT energy flux is onshore, the steep supercritical slope around the canyon results in strong reflection. The model provides the full life span of internal tides around the canyon, including internal tide generation, propagation, and dissipation. ITs propagate into the canyon from the south and are reflected back toward offshore from the canyon’s north side. In the inner part of the canyon, elevated mixing occurs in the middle layer due to an interaction between incident mode-1 ITs and reflected higher-mode ITs. The magnitude of IT flux, generation, and dissipation on the south side of the canyon are higher than those on the north side. An interference pattern in horizontal kinetic energy and available potential energy with a scale of approximately 20–50 km arises due to low-mode wave reflections. Our results provide new insight into IT dynamics associated with a small-scale canyon topography.
Significance Statement
Internal waves play an important role in ocean circulations and ecosystems. In particular, internal waves with frequencies of tides, known as internal tides, strongly enhance energy, heat, and mass transport in coastal oceans. This study presents internal tide dynamics in La Jolla Canyon, California, using a high-resolution numerical model. Model results show energy convergence in the canyon leading to internal tide energy dissipation and mixing. Some parts of internal tide energy reflect back offshore resulting in standing internal waves off California. This study provides new insights into internal tide dynamics and energy budgets in submarine canyons.
Abstract
We present the first continuous mooring records of the West Greenland Coastal Current (WGCC), a conduit of fresh, buoyant outflow from the Arctic Ocean and the Greenland Ice Sheet. Nearly two years of temperature, salinity, and velocity data from 2018 to 2020 demonstrate that the WGCC on the southwest Greenland shelf is a well-formed current distinct from the shelfbreak jet but exhibits strong chaotic variability in its lateral position on the shelf, ranging from the coastline to the shelf break (50 km offshore). We calculate the WGCC volume and freshwater transports during the 35% of the time when the mooring array fully bracketed the current. During these periods, the WGCC remains as strong (0.83 ± 0.02 Sverdrups; 1 Sv ≡ 106 m3 s−1) as the East Greenland Coastal Current (EGCC) on the southeast Greenland shelf (0.86 ± 0.05 Sv) but is saltier than the EGCC and thus transports less liquid freshwater (30 × 10−3 Sv in the WGCC vs 42 × 10−3 Sv in the EGCC). These results indicate that a significant portion of the liquid freshwater in the EGCC is diverted from the coastal current as it rounds Cape Farewell. We interpret the dominant spatial variability of the WGCC as an adjustment to upwelling-favorable wind forcing on the West Greenland shelf and a separation from the coastal bathymetric gradient. An analysis of the winds near southern Greenland supports this interpretation, with nonlocal winds on the southeast Greenland shelf impacting the WGCC volume transport more strongly than local winds over the southwest Greenland shelf.
Abstract
We present the first continuous mooring records of the West Greenland Coastal Current (WGCC), a conduit of fresh, buoyant outflow from the Arctic Ocean and the Greenland Ice Sheet. Nearly two years of temperature, salinity, and velocity data from 2018 to 2020 demonstrate that the WGCC on the southwest Greenland shelf is a well-formed current distinct from the shelfbreak jet but exhibits strong chaotic variability in its lateral position on the shelf, ranging from the coastline to the shelf break (50 km offshore). We calculate the WGCC volume and freshwater transports during the 35% of the time when the mooring array fully bracketed the current. During these periods, the WGCC remains as strong (0.83 ± 0.02 Sverdrups; 1 Sv ≡ 106 m3 s−1) as the East Greenland Coastal Current (EGCC) on the southeast Greenland shelf (0.86 ± 0.05 Sv) but is saltier than the EGCC and thus transports less liquid freshwater (30 × 10−3 Sv in the WGCC vs 42 × 10−3 Sv in the EGCC). These results indicate that a significant portion of the liquid freshwater in the EGCC is diverted from the coastal current as it rounds Cape Farewell. We interpret the dominant spatial variability of the WGCC as an adjustment to upwelling-favorable wind forcing on the West Greenland shelf and a separation from the coastal bathymetric gradient. An analysis of the winds near southern Greenland supports this interpretation, with nonlocal winds on the southeast Greenland shelf impacting the WGCC volume transport more strongly than local winds over the southwest Greenland shelf.
Abstract
In global ocean circulation and climate models, bottom-enhanced turbulent mixing is often parameterized such that the vertical decay scale of the energy dissipation rate ζ is universally constant at 500 m. In this study, using a non-hydrostatic two-dimensional numerical model in the horizontal-vertical plane that incorporates a monochromatic sinusoidal seafloor topography and the Garrett-Munk (GM) background internal wave field, we find that ζ of the internal lee wave-driven bottom-enhanced mixing is actually variable depending on the magnitude of the steady flow U0 , the horizontal wavenumber kH , and the height hT of the seafloor topography. When the steepness parameter (Sp=NhT/U0 where N is the buoyancy frequency near the seafloor) is less than 0.3, internal lee waves propagate upward from the seafloor while interacting with the GM internal wave field to create a turbulent mixing region with ζ that extends further upward from the seafloor as U0 increases, but is nearly independent of kH . In contrast, when Sp exceeds 0.3, inertial oscillations (IOs) not far above the seafloor are enhanced by the intermittent supply of internal lee wave energy Doppler-shifted to the near-inertial frequency, which occurs depending on the sign and magnitude of the background IO shear. The composite flow, consisting of the superposition of U0 and the IOs, interacts with the seafloor topography to efficiently generate internal lee waves during the period centered on the time of the composite flow maximum, but their upward propagation is inhibited by the increased IO shear, creating a turbulent mixing region of small ζ.
Abstract
In global ocean circulation and climate models, bottom-enhanced turbulent mixing is often parameterized such that the vertical decay scale of the energy dissipation rate ζ is universally constant at 500 m. In this study, using a non-hydrostatic two-dimensional numerical model in the horizontal-vertical plane that incorporates a monochromatic sinusoidal seafloor topography and the Garrett-Munk (GM) background internal wave field, we find that ζ of the internal lee wave-driven bottom-enhanced mixing is actually variable depending on the magnitude of the steady flow U0 , the horizontal wavenumber kH , and the height hT of the seafloor topography. When the steepness parameter (Sp=NhT/U0 where N is the buoyancy frequency near the seafloor) is less than 0.3, internal lee waves propagate upward from the seafloor while interacting with the GM internal wave field to create a turbulent mixing region with ζ that extends further upward from the seafloor as U0 increases, but is nearly independent of kH . In contrast, when Sp exceeds 0.3, inertial oscillations (IOs) not far above the seafloor are enhanced by the intermittent supply of internal lee wave energy Doppler-shifted to the near-inertial frequency, which occurs depending on the sign and magnitude of the background IO shear. The composite flow, consisting of the superposition of U0 and the IOs, interacts with the seafloor topography to efficiently generate internal lee waves during the period centered on the time of the composite flow maximum, but their upward propagation is inhibited by the increased IO shear, creating a turbulent mixing region of small ζ.
Abstract
It is evident from hydrographic profiles in the Arctic Ocean that relatively warm and salty Canada Basin Deep Water (CBDW) flows over the Lomonosov Ridge into the Amundsen Basin, in the Eurasian Arctic. However, oceanographic data in the deep Arctic Ocean are scarce, making it difficult to analyze the spatial extent or the dynamics of this inflow. Here we present new hydrographic data from two recent expeditions as well as historical data from previous expeditions in the central Arctic. We use an end-member analysis to quantify the presence of CBDW in the Amundsen and Nansen Basins and infer new circulation pathways. We find that the inflow of CBDW is intermittent, and that it recirculates in the Amundsen Basin along the Gakkel Ridge. Although the forcing mechanisms for the inflow of CBDW into the Amundsen Basin remain unclear owing to the lack of continuous observations, we demonstrate that density-driven overflows, even intermittent, and the pressure gradient across the Lomonosov Ridge are unlikely drivers. We also find multiple deep eddies with a CBDW content of up to 600 g kg−1 and a vertical extent of up to 1200 m in the Amundsen Basin. The high CBDW content of these eddies suggests that they can efficiently trap CBDW and transport its heat and salt over long distances.
Abstract
It is evident from hydrographic profiles in the Arctic Ocean that relatively warm and salty Canada Basin Deep Water (CBDW) flows over the Lomonosov Ridge into the Amundsen Basin, in the Eurasian Arctic. However, oceanographic data in the deep Arctic Ocean are scarce, making it difficult to analyze the spatial extent or the dynamics of this inflow. Here we present new hydrographic data from two recent expeditions as well as historical data from previous expeditions in the central Arctic. We use an end-member analysis to quantify the presence of CBDW in the Amundsen and Nansen Basins and infer new circulation pathways. We find that the inflow of CBDW is intermittent, and that it recirculates in the Amundsen Basin along the Gakkel Ridge. Although the forcing mechanisms for the inflow of CBDW into the Amundsen Basin remain unclear owing to the lack of continuous observations, we demonstrate that density-driven overflows, even intermittent, and the pressure gradient across the Lomonosov Ridge are unlikely drivers. We also find multiple deep eddies with a CBDW content of up to 600 g kg−1 and a vertical extent of up to 1200 m in the Amundsen Basin. The high CBDW content of these eddies suggests that they can efficiently trap CBDW and transport its heat and salt over long distances.
Abstract
Observations from a Seaglider, two pressure-sensor-equipped inverted echo sounders (PIESs), and a thermistor chain (T-chain) mooring were used to determine the waveform and timing of internal solitary waves (ISWs) over the continental slope east of Dongsha Atoll. The Korteweg–de Vries (KdV) and Dubreil–Jacotin–Long (DJL) equations supplemented the data from repeated profiling by the glider at a fixed position (depth ∼1017 m) during 19–24 May 2019. The glider-recorded pressure perturbations were used to compute the rarely measured vertical velocity (w) with a static glider flight model. After removing the internal tide–caused vertical velocity, the w of the eight mode-1 ISWs ranged from −0.35 to 0.36 m s−1 with an uncertainty of ±0.005 m s−1 due to turbulent oscillations and measurement error. The horizontal velocity profiles, wave speeds, and amplitudes of the eight ISWs were further derived from the KdV and DJL equations using the glider-observed w and potential density profiles. The mean speed of the corresponding ISW from the PIES deployed at ∼2000 m depth to the T-chain moored at 500 m depth and the 19°C isotherm displacement computed from the T-chain were used to validate the waveform derived from KdV and DJL. The validation suggests that the DJL equation provides reasonably representative wave speed and amplitude for the eight ISWs compared to the KdV equation. Stand-alone glider data provide near-real-time hydrography and vertical velocities for mode-1 ISWs and are useful for characterizing the anatomy of ISWs and validating numerical simulations of these waves.
Significance Statement
Internal solitary waves (ISWs), which vertically displace isotherms by approximately 100 m, considerably affect nutrient pumping, turbulent mixing, acoustic propagation, underwater navigation, bedform generation, and engineering structures in the ocean. A complete understanding of their anatomy and dynamics has many applications, such as predicting the timing and position of mode-1 ISWs and evaluating their environmental impacts. To improve our understanding of these waves and validate the two major theories based on the Korteweg–de Vries (KdV) and Dubreil–Jacotin–Long (DJL) equations, the hydrography data collected from stand-alone, real-time profiling of an autonomous underwater vehicle (Seaglider) have proven to be useful in determining the waveform of these transbasin ISWs in deep water. The solutions to the DJL equation show good agreement with the properties of mode-1 ISWs obtained from the rare in situ data, whereas the solutions to the KdV equation underestimate these properties. Seaglider observations also provide in situ data to evaluate the performance of numerical simulations and forecasting of ISWs in the northern South China Sea.
Abstract
Observations from a Seaglider, two pressure-sensor-equipped inverted echo sounders (PIESs), and a thermistor chain (T-chain) mooring were used to determine the waveform and timing of internal solitary waves (ISWs) over the continental slope east of Dongsha Atoll. The Korteweg–de Vries (KdV) and Dubreil–Jacotin–Long (DJL) equations supplemented the data from repeated profiling by the glider at a fixed position (depth ∼1017 m) during 19–24 May 2019. The glider-recorded pressure perturbations were used to compute the rarely measured vertical velocity (w) with a static glider flight model. After removing the internal tide–caused vertical velocity, the w of the eight mode-1 ISWs ranged from −0.35 to 0.36 m s−1 with an uncertainty of ±0.005 m s−1 due to turbulent oscillations and measurement error. The horizontal velocity profiles, wave speeds, and amplitudes of the eight ISWs were further derived from the KdV and DJL equations using the glider-observed w and potential density profiles. The mean speed of the corresponding ISW from the PIES deployed at ∼2000 m depth to the T-chain moored at 500 m depth and the 19°C isotherm displacement computed from the T-chain were used to validate the waveform derived from KdV and DJL. The validation suggests that the DJL equation provides reasonably representative wave speed and amplitude for the eight ISWs compared to the KdV equation. Stand-alone glider data provide near-real-time hydrography and vertical velocities for mode-1 ISWs and are useful for characterizing the anatomy of ISWs and validating numerical simulations of these waves.
Significance Statement
Internal solitary waves (ISWs), which vertically displace isotherms by approximately 100 m, considerably affect nutrient pumping, turbulent mixing, acoustic propagation, underwater navigation, bedform generation, and engineering structures in the ocean. A complete understanding of their anatomy and dynamics has many applications, such as predicting the timing and position of mode-1 ISWs and evaluating their environmental impacts. To improve our understanding of these waves and validate the two major theories based on the Korteweg–de Vries (KdV) and Dubreil–Jacotin–Long (DJL) equations, the hydrography data collected from stand-alone, real-time profiling of an autonomous underwater vehicle (Seaglider) have proven to be useful in determining the waveform of these transbasin ISWs in deep water. The solutions to the DJL equation show good agreement with the properties of mode-1 ISWs obtained from the rare in situ data, whereas the solutions to the KdV equation underestimate these properties. Seaglider observations also provide in situ data to evaluate the performance of numerical simulations and forecasting of ISWs in the northern South China Sea.
Abstract
The equatorial cold tongue in the Pacific Ocean has been intensely studied during the last decades as it plays an important role in air–sea interactions and climate issues. Recently, Warner et al. revealed gravity currents apparently originating in tropical instability waves. Both phenomena have strong dissipation rates and were considered to play a significant role in cascading energy from the mesoscale to smaller horizontal scales, as well as to vertical scales less than 1 m. Here, we present Sentinel-3 satellite observations of internal solitary waves (ISWs) in the Pacific cold tongue near the equator, in a zonal band stretching from 210° to 265°E, away from any steep bottom topography. Within this band these waves propagate in multiple directions. Some of the waves’ characteristics, such as the distance between wave crests, crest lengths, and time scales, are estimated from satellite observations. In total we identify 116 ISW trains during one full year (2020), with typical distances between crests of 1500 m and crest lengths of hundreds of kilometers. These ISW trains appear to be generated by buoyant gravity currents having sharp fronts detectable in thermal infrared satellite images. A 2D numerical model confirms that resonantly generated nonlinear internal waves with amplitudes of O(10) m may be continuously initiated at the fronts of advancing gravity currents.
Significance Statement
Satellite imagery reveals the repeated occurrence of internal solitary waves in the near-equatorial region of the east Pacific, despite the absence of topography. These waves appear to be resonantly generated over the sheared Equatorial Undercurrent by gravity currents that propagate as frontal zones of 1000-km scale tropical instability waves, providing a physical link with viscous mixing scales.
Abstract
The equatorial cold tongue in the Pacific Ocean has been intensely studied during the last decades as it plays an important role in air–sea interactions and climate issues. Recently, Warner et al. revealed gravity currents apparently originating in tropical instability waves. Both phenomena have strong dissipation rates and were considered to play a significant role in cascading energy from the mesoscale to smaller horizontal scales, as well as to vertical scales less than 1 m. Here, we present Sentinel-3 satellite observations of internal solitary waves (ISWs) in the Pacific cold tongue near the equator, in a zonal band stretching from 210° to 265°E, away from any steep bottom topography. Within this band these waves propagate in multiple directions. Some of the waves’ characteristics, such as the distance between wave crests, crest lengths, and time scales, are estimated from satellite observations. In total we identify 116 ISW trains during one full year (2020), with typical distances between crests of 1500 m and crest lengths of hundreds of kilometers. These ISW trains appear to be generated by buoyant gravity currents having sharp fronts detectable in thermal infrared satellite images. A 2D numerical model confirms that resonantly generated nonlinear internal waves with amplitudes of O(10) m may be continuously initiated at the fronts of advancing gravity currents.
Significance Statement
Satellite imagery reveals the repeated occurrence of internal solitary waves in the near-equatorial region of the east Pacific, despite the absence of topography. These waves appear to be resonantly generated over the sheared Equatorial Undercurrent by gravity currents that propagate as frontal zones of 1000-km scale tropical instability waves, providing a physical link with viscous mixing scales.