Browse

You are looking at 1 - 10 of 68,918 items for :

  • Refine by Access: Content accessible to me x
Clear All
David Fuchs
,
Steven C. Sherwood
,
Darryn Waugh
,
Vishal Dixit
,
Matthew H. England
,
Yi-Ling Hwong
, and
Olivier Geoffroy

Abstract

Midlatitude weather is largely governed by bands of strong westerly winds known as the midlatitude jets, but what controls the jet properties, particularly their latitudes, remains poorly understood. Climate models show a spread of about 10° in their simulated present-day latitude of the Southern Hemisphere (SH) jet, and a related spread in its predicted poleward shift under global warming. We find that models with more poleward jets simulate more low-level moisture, a warmer upper troposphere, and different precipitation patterns than those with equatorward jets, potentially implicating intermodel differences in moist convection and microphysics. Accordingly, a suite of atmospheric model runs is performed where the deep or shallow convective parameterizations are individually turned off either globally or in specific latitude bands. These experiments suggest that models that produce more shallow convection in the midlatitudes tend to position the jet relatively poleward in SH summer, whereas those that favor deep convection tend to position it equatorward. This accounts for a spread 60% as large as that of the AMIP ensemble during the austral summer. Our results suggest that, in the boreal summer, similar biases appear in the Northern Hemisphere. The presence of shallow convection in the Northern Hemisphere midlatitudes reduces SH jet shift in a warmer climate in accordance to the correlation between jet positions and shift seen in this season. These results can help explain intermodel differences in the position and shift of the jet, and point to an unexpected role for atmospheric moist convection in the midlatitude circulation.

Restricted access
Hsiao-Chun Lin
,
Juanzhen Sun
,
Tammy M. Weckwerth
,
Everette Joseph
, and
Junkyung Kay

Abstract

The New York State Mesonet (NYSM) has provided continuous in situ and remote sensing observations near the surface and within the lower troposphere since 2017. The dense observing network can capture the evolution of mesoscale motions with high temporal and spatial resolution. The objective of this study was to investigate whether the assimilation of NYSM observations into numerical weather prediction models could be beneficial for improving model analysis and short-term weather prediction. The study was conducted using a convective event that occurred in New York on 21 June 2021. A line of severe thunderstorms developed, decayed, and then reintensified as it propagated eastward across the state. Several data assimilation (DA) experiments were conducted to investigate the impact of NYSM data using the operational DA system Gridpoint Statistical Interpolation with rapid update cycles. The assimilated datasets included National Centers for Environmental Prediction Automated Data Processing global upper-air and surface observations, NYSM surface observations, Doppler lidar wind retrievals, and microwave radiometer (MWR) thermodynamic retrievals at NYSM profiler sites. In comparison with the control experiment that assimilated only conventional data, the timing and location of the convection reintensification was significantly improved by assimilating NYSM data, especially the Doppler lidar wind data. Our analysis indicated that the improvement could be attributed to improved simulation of the Mohawk–Hudson Convergence. We also found that the MWR DA resulted in degraded forecasts, likely due to large errors in the MWR temperature retrievals. Overall, this case study suggested the positive impact of assimilating NYSM surface and profiler data on forecasting summertime severe weather.

Open access
David P. Rowell
and
Ségolène Berthou

Abstract

Convection-permitting (CP) models promise much in response to the demand for increased localization of future climate information: greater resolution of influential land surface characteristics, improved representation of convective storms, and unprecedented resolution of user-relevant data. In practice, however, it is contended that the benefits of enhanced resolution cannot be fully realized due to the gap between models’ computational and effective resolution. Nevertheless, where surface forcing is strongly heterogeneous, one can argue that usable information may persist close to the grid scale. Here we analyze a 4.5-km resolution CP projection for Africa, asking whether and where fine-scale projection detail is robust at sub-25-km scales, focusing on geolocated rainfall features (rather than Lagrangian motion). Statistically significant detail for seasonal means and daily extremes is most frequent in regions of high topographic variability, most prominently in East Africa throughout the annual cycle, West Africa in the monsoon season, and to a lesser extent over Southern Africa. Lake coastal features have smaller but significant impacts on projection detail, whereas ocean coastlines and urban conurbations have little or no detectable impact. The amplitude of this sub-25-km projection detail can be similar to that of the local climatology in mountainous regions (or around a third near East Africa’s lake shores), so potentially beneficial for improved localization of future climate information. In flatter regions distant from coasts (the majority of Africa), spatial heterogeneity can be explained by chaotic weather variability. Here, the robustness of local climate projection information can be substantially enhanced by spatial aggregation to approximately 25-km scales, especially for daily extremes and equatorial regions.

Significance Statement

Recent substantial increases in the horizontal resolution of climate models bring the potential for both more reliable and more local future climate information. However, the best spatial scale on which to analyze such data for impacts assessments remains unclear. We examine a 4.5-km resolution climate projection for Africa, focusing on seasonal and daily rainfall. Spatially fixed fine-scale projection detail is found to be statistically robust at sub-25-km scales in the most mountainous regions and to a lesser extent along lake coastlines. Elsewhere, the model data may be better aggregated to at least 25-km scales to reduce sampling uncertainties. Such evolving guidance on the circumstances and extent of high-resolution data aggregation will help users gain greater benefit from climate model projections.

Open access
M. Andrés-Carcasona
,
M. Soria
,
E. García-Melendo
, and
A. Miró

Abstract

Robert’s rising thermal bubble (RRTB) is a benchmark case used to assess atmospheric models. In this paper, RRTB is further studied both using an analytical and a numerical approach, improving to a greater extent the qualitative description found in the literature. The theoretical framework used is that of buoyant thermals and scaling theory that together are able to predict part of the expected behavior of the bubble as it rises and, therefore, can be used to further validate the simulations. For the numerical experiments, we simulate both a two-dimensional and three-dimensional RRTB using a variety of convection schemes under the Boussinesq approximation and with a higher resolution. While the results are in agreement with those presented by previous authors on the same benchmark and also with the theoretical framework established, we add the quantitative measures to validate the underlying physics of the numerical model. Our results also show that, due to its completely chaotic nature when confined in a 2D plane, RRTB becomes a very challenging candidate to be used as a benchmark if only compared in a qualitative way, and when the 3D bubble is simulated, the shape changes significantly.

Restricted access
Chenyue Zhang
,
Ming Xue
,
Kefeng Zhu
, and
Xiaoding Yu

Abstract

A climatology of significant tornadoes [SIGTOR, tornadoes rated (E)F2+ on the (enhanced) Fujita scale] within China and in three subregions, including northern, central, and southern China, is first presented for the period 1980–2016. In total, 129 SIGTOR are recorded in China, with an average of 3.5 per year. The tornado inflow environments of the south-central and southeast regions of the United States (USC and USSE) are compared with those of China and its subregions based on sounding-derived parameters including shear, storm-relative helicity, convective available potential energy (CAPE), lifting condensation level (LCL), etc. Soundings are extracted from the ERA5 reanalysis dataset. The results confirm that the SIGTOR in USSE are characterized by high shear, low CAPE, and low LCL whereas those in USC are characterized by moderate-to-high shear, high CAPE, and high LCL. The thermodynamic conditions of tornadic cases are favorable for China, with moderate-to-high CAPE and low-to-moderate LCL, but their kinematic conditions are much less favorable than in the United States, a fact that is believed to be primarily responsible for the lower tornado frequency and intensity in China. The high CAPE in China is due mostly to high humidity. For three subregions in China, the central China cases account for 60% of total samples, and its environmental features are similar to those of China. The average shear with northern China cases is stronger than that with the other two subregions, and the midlayer is relatively dry. The southern China SIGTOR have the most conducive humidity conditions, but the CAPE and shear there are the lowest. The northern, central, and southern China environments can be considered as representative of midlatitude, subtropical, and tropical regions.

Significance Statement

We document the climatological characteristics of significant tornadoes (SIGTOR) within China and compare the inflow environments of SIGTOR in China and its subregions with those in the U.S. central and southeastern regions. The availability of hourly high-resolution ERA5 data makes the environments based on extracted proximity soundings much more accurate than possible with earlier reanalyses. The environmental characteristics show systematic differences in the tornado environments of different regions of China and the United States and suggest different roles played by thermodynamic and kinematic conditions for tornado formation. Overall, the environmental differences are consistent with the resulting frequency and intensities of SIGTOR. The findings are helpful toward improving tornado forecasting and warning or even understanding of potential impacts of climate change on SIGTOR, especially in China, where such studies are rarer.

Restricted access
José C. Fernández-Alvarez
,
Marta Vázquez
,
Albenis Pérez-Alarcón
,
Raquel Nieto
, and
Luis Gimeno

Abstract

Moisture transport and changes in the source–sink relationship play a vital role in the atmospheric branch of the hydrological cycle. Lagrangian approaches have emerged as the dominant tool to account for estimations of moisture sources and sinks; those that use the FLEXPART model fed by ERA-Interim reanalysis are most commonly used. With the release of the higher spatial resolution ERA5, it is crucial to compare the representation of moisture sources and sinks using the FLEXPART Lagrangian model with different resolutions in the input data, as well as its version for WRF-ARW input data, the FLEXPART-WRF. In this study, we compare this model for 2014 and moisture sources for the Iberian Peninsula and moisture sinks of North Atlantic and Mediterranean. For comparison criteria, we considered FLEXPARTv9.0 outputs forced by ERA-Interim reanalysis as “control” values. It is concluded that FLEXPARTv10.3 forced with ERA5 data at various horizontal resolutions (0.5° and 1°) represents moisture source and sink zones as represented forced by ERA-Interim (1°). In addition, the version fed with the dynamic downscaling WRF-ARW outputs (∼20 km), previously forced with ERA5, also represents these patterns accurately, allowing this tool to be used in future investigations at higher resolutions and for regional domains.

Significance Statement

The FLEXPART dispersion model forced with ERA5 reanalysis data at various resolutions represents moisture source and sink zones compared to when it is forced by ERA-Interim. When the Weather Research and Forecasting Model is used to dynamically downscale ERA5, FLEXPART-WRF can also represent moisture sources and sinks, allowing this tool to be used in future investigations requiring higher resolution and regional domains and on regions with a predominance of complex orography due to its ability to represent local moisture transport.

Restricted access
Samuel E. Muñoz
,
Brynnydd Hamilton
, and
B. Parazin

Abstract

The Mississippi River basin drains nearly one-half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gauge data to document the evolution of floods on the Missouri and Ohio Rivers—the two largest tributaries of the Mississippi River—and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains low-level jet, whereas Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño–Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. We also use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers.

Free access
Partha S. Bhattacharjee
,
Li Zhang
,
Barry Baker
,
Li Pan
,
Raffaele Montuoro
,
Georg A. Grell
, and
Jeffery T. McQueen

Abstract

The NWS/NCEP recently implemented a new global deterministic aerosol forecast model named the Global Ensemble Forecast Systems Aerosols (GEFS-Aerosols), which is based on the Finite Volume version 3 GFS (FV3GFS). It replaced the operational NOAA Environmental Modeling System (NEMS) GFS Aerosol Component version 2 (NGACv2), which was based on a global spectral model (GSM). GEFS-Aerosols uses aerosol modules from the GOCART previously integrated in the WRF Model with Chemistry (WRF-Chem), FENGSHA dust scheme, and several other updates. In this study, we have extensively evaluated aerosol optical depth (AOD) forecasts from GEFS-Aerosols against various observations over a timespan longer than one year (2019–20). The total AOD improvement (in terms of seasonal mean) in GEFS-Aerosols is about 40% compared to NGACv2 in the fall and winter season of 2019. In terms of aerosol species, the biggest improvement came from the enhanced representation of biomass burning aerosol species as GEFS-Aerosols is able to capture more fire events in southern Africa, South America, and Asia than its predecessor. Dust AODs reproduce the seasonal variation over Africa and the Middle East. We have found that correlation of total AOD over large regions of the globe remains consistent for forecast days 3–5. However, we have found that GEFS-Aerosols generates some systematic positive biases for organic carbon AOD near biomass burning regions and sulfate AOD over prediction over East Asia. The addition of a data assimilation capability to GEFS-Aerosols in the near future is expected to address these biases and provide a positive impact to aerosol forecasts by the model.

Significance Statement

The purpose of this study is to quantify improvements associated with the newly implemented global aerosol forecast model at NWS/NCEP. The monthly and seasonal variations of AOD forecasts of various aerosol regimes are overall consistent with the observations. Our results provide a guide to downstream regional air quality models like CMAQ that will use GEFS-Aerosols to provide lateral boundary conditions.

Restricted access
Yibing Su
,
James A. Smith
, and
Gabriele Villarini

Abstract

The Lower Mississippi River has experienced a cluster of extreme floods during the past two decades. The Bonnet Carré spillway, which is located on the Mississippi River immediately upstream of New Orleans, has been operated 15 times since its completion in 1931, with 7 occurrences after 2008. In this study, we examine rainfall and atmospheric water balance components associated with Lower Mississippi River flooding in 2008, 2011, and 2015–19. We focus on multiple time scales—1, 3, 7, and 14 days—reflecting contributions from individual storm systems and the aggregate contributions from a sequence of storm systems. Atmospheric water balance variables—integrated water vapor flux (IVT) and precipitable water—are central to our assessment of the storm environment for Lower Mississippi flood events. We find anomalously large IVT corridors accompany the critical periods of heavy rainfall and are organized in southwest–northeast orientation over the Mississippi domain. Atmospheric rivers play an important role as agents of extremes in water vapor flux and rainfall. We conduct climatological analyses of IVT and precipitable water extremes across the four time scales using 40 years of North American Regional Reanalysis (NARR) fields from 1979 to 2018. We find significant increasing trends in both variables at all time scales. Increases in IVT especially cover large regions of the Mississippi domain. The findings point to increased vulnerability faced by the Mississippi flood control system in the current and future climate.

Restricted access
Jia Wang
and
Minghua Zhang

Abstract

A constrained data assimilation (CDA) system based on the ensemble variational (EnVar) method and physical constraints of mass and water conservations is evaluated through three convective cases during the Midlatitude Continental Convective Clouds Experiment (MC3E) of the Atmospheric Radiation Measurement (ARM) program. Compared to the original data assimilation (ODA), the CDA is shown to perform better in the forecasted state variables and simulated precipitation. The CDA is also shown to greatly mitigate the loss of forecast skills in observation denial experiments when radar radial winds are withheld in the assimilation. Modifications to the algorithm and sensitivities of the CDA to the calculation of the time tendencies in the constraints are described.

Restricted access