Browse

You are looking at 1 - 10 of 70,087 items for :

  • Refine by Access: Content accessible to me x
Clear All
Amanda Richter
and
Timothy J. Lang

Abstract

NASA’s Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign gathered data using “satellite-simulating” (albeit with higher-resolution data than satellites currently provide) and in situ aircraft to study snowstorms, with an emphasis on banding. This study used three IMPACTS microwave instruments—two passive and one active—chosen for their sensitivity to precipitation microphysics. The 10–37-GHz passive frequencies were well suited for detecting light precipitation and differentiating rain intensities over water. The 85–183-GHz frequencies were more sensitive to cloud ice, with higher cloud tops manifesting as lower brightness temperatures, but this did not necessarily correspond well to near-surface precipitation. Over land, retrieving precipitation information from radiometer data is more difficult, requiring increased reliance on radar to assess storm structure. A dual-frequency ratio (DFR) derived from the radar’s Ku- and Ka-band frequencies provided greater insight into storm microphysics than reflectivity alone. Areas likely to contain mixed-phase precipitation (often the melting layer/bright band) generally had the highest DFR, and high-altitude regions likely to contain ice usually had the lowest DFR. The DFR of rain columns increased toward the ground, and snowbands appeared as high-DFR anomalies.

Significance Statement

Winter precipitation was studied using three airborne microwave sensors. Two were passive radiometers covering a broad range of frequencies, while the other was a two-frequency radar. The radiometers did a good job of characterizing the horizontal structure of winter storms when they were over water, but struggled to provide detailed information about winter storms when they were over land. The radar was able to provide vertically resolved details of storm structure over land or water, but only provided information at nadir, so horizontal structure was less well described. The combined use of all three instruments compensated for individual deficiencies, and was very effective at characterizing overall winter storm structure.

Open access
Todd Emmenegger
,
Fiaz Ahmed
,
Yi-Hung Kuo
,
Shaocheng Xie
,
Chengzhu Zhang
,
Cheng Tao
, and
J. David Neelin

Abstract

Conditional instability and the buoyancy of plumes drive moist convection but have a variety of representations in model convective schemes. Vertical thermodynamic structure information from Atmospheric Radiation Measurement (ARM) sites and reanalysis (ERA5), satellite-derived precipitation (TRMM3b42), and diagnostics relevant for plume buoyancy are used to assess climate models. Previous work has shown that CMIP6 models represent moist convective processes more accurately than their CMIP5 counterparts. However, certain biases in convective onset remain pervasive among generations of CMIP modeling efforts. We diagnose these biases in a cohort of nine CMIP6 models with subdaily output, assessing conditional instability in profiles of equivalent potential temperature, θe , and saturation equivalent potential temperature, θes , in comparison to a plume model with different mixing assumptions. Most models capture qualitative aspects of the θes vertical structure, including a substantial decrease with height in the lower free troposphere associated with the entrainment of subsaturated air. We define a “pseudo-entrainment” diagnostic that combines subsaturation and a θes measure of conditional instability similar to what entrainment would produce under the small-buoyancy approximation. This captures the trade-off between larger θes lapse rates (entrainment of dry air) and small subsaturation (permits positive buoyancy despite high entrainment). This pseudo-entrainment diagnostic is also a reasonable indicator of the critical value of integrated buoyancy for precipitation onset. Models with poor θe /θes structure (those using variants of the Tiedtke scheme) or low entrainment runs of CAM5, and models with low subsaturation, such as NASA-GISS, lie outside the observational range in this diagnostic.

Open access
Marcin Paszkuta
,
Maciej Markowski
, and
Adam Krężel

Abstract

Empirical verification of the reliability of estimating the amount of solar radiation entering the sea surface is a challenging topic due to the quantity and quality of data. The collected measurements of total and diffuse radiation from the Multifilter Rotating Shadowband Radiometer (MRF-7) commercial device over the Baltic Sea were compared with the satellite results of using modeling data. The obtained results, also divided into individual spectral bands, were analyzed for usefulness in satellite cloud and aerosol detection. The article presents a new approach to assessing radiation and cloud cover based on the use of models supported by satellite data. Measurement uncertainties were estimated for the obtained results. To reduce uncertainty, the results were averaged to the time constant of the device, day, and month. The effectiveness of the method was determined by comparison against the SM Hel measurement point. The empirical results obtained confirm the effectiveness of using satellite methods for estimating radiation along with cloud-cover detection over the sea with the adopted uncertainty values.

Significance Statement

The difference in the amount of solar energy reaching the sea surface between cloudless and cloudy areas reaches tens of percent. Empirical results confirm the effectiveness of using satellite methods to estimate solar radiation along with cloud-cover detection. Over the sea in comparison to land, the amount of empirical data is limited. This research uses new empirical results of radiation to determine the accuracy of satellite estimation results. Experimental results show that the proposed method is effective and adequately parameterizes the detection of satellite image features.

Open access
Joseph S. Schlosser
,
Ryan Bennett
,
Brian Cairns
,
Gao Chen
,
Brian L. Collister
,
Johnathan W. Hair
,
Michael Jones
,
Michael A. Shook
,
Armin Sorooshian
,
Kenneth L. Thornhill
,
Luke D. Ziemba
, and
Snorre Stamnes

Abstract

Suborbital (e.g., airborne) campaigns that carry advanced remote sensing and in situ payloads provide detailed observations of atmospheric processes, but can be challenging to use when it is necessary to geographically collocate data from multiple platforms that make repeated observations of a given geographic location at different altitudes. This study reports on a data collocation algorithm that maximizes the volume of collocated data from two coordinated suborbital platforms and demonstrates its value using data from the NASA Aerosol Cloud Meteorology Interactions Over the western Atlantic Experiment (ACTIVATE) suborbital mission. A robust data collocation algorithm is critical for the success of the ACTIVATE mission goal to develop new and improved remote sensing algorithms, and quantify their performance. We demonstrate the value of these collocated data to quantify the performance of a recently developed vertically resolved lidar + polarimeter–derived aerosol particle number concentration (Na ) product, resulting in a range-normalized mean absolute deviation (NMAD) of 9% compared to in situ measurements. We also show that this collocation algorithm increases the volume of collocated ACTIVATE data by 21% compared to using only nearest-neighbor finding algorithms alone. Additional to the benefits demonstrated within this study, the data files and routines produced by this algorithm have solved both the critical collocation and the collocation application steps for researchers who require collocated data for their own studies. This freely available and open-source collocation algorithm can be applied to future suborbital campaigns that, like ACTIVATE, use multiple platforms to conduct coordinated observations, e.g., a remote sensing aircraft together with in situ data collected from suborbital platforms.

Significance Statement

This study describes a data collocation (i.e., selection) process that aims to maximize the volume of data identified to be simultaneously collected in time and space from two coordinated measurement platforms. The functional utility of the resultant dataset is also demonstrated by extending the validation of aerosol particle number concentration derived from standard lidar and polarimeter data products from a suborbital mission that used two aircraft platforms.

Open access
Gijs de Boer
,
Brian J. Butterworth
,
Jack S. Elston
,
Adam Houston
,
Elizabeth Pillar-Little
,
Brian Argrow
,
Tyler M. Bell
,
Phillip Chilson
,
Christopher Choate
,
Brian R. Greene
,
Ashraful Islam
,
Ryan Martz
,
Michael Rhodes
,
Daniel Rico
,
Maciej Stachura
,
Francesca M. Lappin
,
Antonio R. Segales
,
Seabrooke Whyte
, and
Matthew Wilson

Abstract

Small uncrewed aircraft systems (sUAS) are regularly being used to conduct atmospheric research and are starting to be used as a data source for informing weather models through data assimilation. However, only a limited number of studies have been conducted to evaluate the performance of these systems and assess their ability to replicate measurements from more traditional sensors such as radiosondes and towers. In the current work, we use data collected in central Oklahoma over a 2-week period to offer insight into the performance of five different sUAS platforms and associated sensors in measuring key weather data. This includes data from three rotary-wing and two fixed-wing sUAS and included two commercially available systems and three university-developed research systems. Flight data were compared to regular radiosondes launched at the flight location, tower observations, and intercompared with data from other sUAS platforms. All platforms were shown to measure atmospheric state with reasonable accuracy, though there were some consistent biases detected for individual platforms. This information can be used to inform future studies using these platforms and is currently being used to provide estimated error covariances as required in support of assimilation of sUAS data into weather forecasting systems.

Open access
Nina Horat
and
Sebastian Lerch

Abstract

Subseasonal weather forecasts are becoming increasingly important for a range of socioeconomic activities. However, the predictive ability of physical weather models is very limited on these time scales. We propose four postprocessing methods based on convolutional neural networks to improve subseasonal forecasts by correcting systematic errors of numerical weather prediction models. Our postprocessing models operate directly on spatial input fields and are therefore able to retain spatial relationships and to generate spatially homogeneous predictions. They produce global probabilistic tercile forecasts for biweekly aggregates of temperature and precipitation for weeks 3–4 and 5–6. In a case study based on a public forecasting challenge organized by the World Meteorological Organization, our postprocessing models outperform the bias-corrected forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), and achieve improvements over climatological forecasts for all considered variables and lead times. We compare several model architectures and training modes and demonstrate that all approaches lead to skillful and well-calibrated probabilistic forecasts. The good calibration of the postprocessed forecasts emphasizes that our postprocessing models reliably quantify the forecast uncertainty based on deterministic input information in the form of ECMWF ensemble mean forecast fields only.

Open access
Ryosuke Okugawa
,
Kazuaki Yasunaga
,
Atsushi Hamada
, and
Satoru Yokoi

Abstract

Large amounts of tropical precipitation have been observed as significantly concentrated over the western coast of Sumatra Island. In the present study, we used a cloud-resolving model to perform 14-day numerical simulations and reproduce the distinctive precipitation distributions over western Sumatra Island and adjacent areas. The control experiment, in which the warmer sea surface temperature (SST) near the coast was incorporated and the terminal velocity and effective radius of ice clouds were parameterized to be temperature dependent, adequately reproduced the precipitation concentration as well as the diurnal cycles of precipitation. We then used the column-integrated frozen moist static energy budget equation, which is virtually equivalent to the column-integrated moisture budget equation under the weak temperature gradient assumption, to formulate sensitivity experiments focusing on the effects of coastal SST and upper-level ice clouds. Analysis of the time-averaged fields revealed that the column-integrated moisture and precipitation in the coast were significantly reduced when a cooler coastal SST or larger ice cloud particle size was assumed. Based on the comparison of the sensitivity experiments and in situ observations, we speculate that ice clouds, which are exported from inland convection that is strictly regulated by solar radiation, promote the accumulation of moisture in the coastal region by mitigating radiative cooling. Together with the moisture and heat supplied by the warm ocean surface, they contribute to the large amounts of precipitation here.

Open access
Azusa Takeishi
and
Chien Wang

Abstract

Raindrop formation processes in warm clouds mainly consist of condensation and collision–coalescence of small cloud droplets. Once raindrops form, they can continue growing through collection of cloud droplets and self-collection. In this study, we develop novel emulators to represent raindrop formation as a function of various physical or background environmental conditions by using a sophisticated aerosol–cloud model containing 300 droplet size bins and machine learning methods. The emulators are then implemented in two microphysics schemes in the Weather Research and Forecasting Model and tested in two idealized cases. The simulations of shallow convection with the emulators show a clear enhancement of raindrop formation compared to the original simulations, regardless of the scheme in which they were embedded. On the other hand, the simulations of deep convection show a more complex response to the implementation of the emulators, in terms of the changes in the amount of rainfall, due to the larger number of microphysical processes involved in the cloud system (i.e., ice-phase processes). Our results suggest the potential of emulators to replace the conventional parameterizations, which may allow us to improve the representation of physical processes at an affordable computational expense.

Significance Statement

Formation of raindrops marks a critical stage in cloud evolution. Accurate representations of raindrop formation processes require detailed calculations of cloud droplet growth processes. These calculations are often not affordable in weather and climate models as they are computationally expensive due to their complex dependence on cloud droplet size distributions and dynamical conditions. As a result, simplified parameterizations are more frequently used. In our study we trained machine learning models to learn raindrop formation rates from detailed calculations of cloud droplet evolutions in 1000 parcel-model simulations. The implementation of the developed models or the emulators in a weather forecasting model shows a change in the total rainfall and cloud characteristics, indicating the potential improvement of cloud representations in models if these emulators replace the conventional parameterizations.

Open access
Víctor C. Mayta
and
Ángel F. Adames Corraliza

Abstract

Observations of column water vapor in the tropics show significant variations in space and time, indicating that it is strongly influenced by the passage of weather systems. It is hypothesized that many of the influencing systems are moisture modes, systems whose thermodynamics are governed by moisture. On the basis of four objective criteria, results suggest that all oceanic convectively coupled tropical depression (TD)-like waves and equatorial Rossby waves are moisture modes. These modes occur where the horizontal column moisture gradient is steep and not where the column water vapor content is high. Despite geographical basic-state differences, the moisture modes are driven by the same mechanisms across all basins. The moist static energy (MSE) anomalies propagate westward by horizontal moisture advection by the trade winds. Their growth is determined by the advection of background moisture by the anomalous meridional winds and anomalous radiative heating. Horizontal maps of column moisture and 850-hPa streamfunction show that convection is partially collocated with the low-level circulation in nearly all the waves. Both this structure and the process of growth indicate that the moisture modes grow from moisture–vortex instability. Last, space–time spectral analysis reveals that column moisture and low-level meridional winds are coherent and exhibit a phasing that is consistent with a poleward latent energy transport. Collectively, these results indicate that moisture modes are ubiquitous across the tropics. That they occur in regions of steep horizontal moisture gradients and grow from moisture–vortex instability suggests that these gradients are inherently unstable and are subject to continuous stirring.

Significance Statement

Over the tropics, column water vapor has been found to be highly correlated with precipitation, especially in slowly evolving systems. These observations and theory support the hypothesis that moisture modes exist, a type of precipitating weather system that does not exist in dry theory. In this study, we found that all oceanic tropical depression (TD)-like waves and equatorial Rossby waves are moisture modes. These systems exist in regions where moisture varies greatly in space, and they grow by transporting air from the humid areas of the tropics toward their low pressure center. These results indicate that the climatological-mean distribution of moisture in the tropics is unstable and is subject to stirring by moisture modes.

Open access
Clara Deser
,
Adam S. Phillips
,
Michael. A. Alexander
,
Dillon J. Amaya
,
Antonietta Capotondi
,
Michael G. Jacox
, and
James D. Scott

Abstract

The future evolution of sea surface temperature (SST) extremes is of great concern, not only for the health of marine ecosystems and sustainability of commercial fisheries, but also for precipitation extremes fueled by moisture evaporated from the ocean. This study examines the projected influence of anthropogenic climate change on the intensity and duration of monthly SST extremes, hereafter termed marine heat waves (MHWs) and marine cold waves (MCWs), based on initial-condition large ensembles with seven Earth system models. The large number of simulations (30–100) with each model allows for robust quantification of future changes in both the mean state and variability in each model. In general, models indicate that future changes in variability will cause MHW and MCW events to intensify in the northern extratropics and weaken in the tropics and Southern Ocean, and to shorten in duration in many areas. These changes are generally symmetric between MHWs and MCWs, except for the longitude of duration change in the tropical Pacific and sign of duration change in the Arctic. Projected changes in ENSO account for a large fraction of the variability-induced changes in MHW and MCW characteristics in each model and are responsible for much of the intermodel spread as a result of differences in future ENSO behavior. The variability-related changes in MHW and MCW characteristics noted above are superimposed upon large mean-state changes. Indeed, their contribution to the total change in SST during MHW and MCW events is generally <10% except in polar regions where they contribute upward of 50%.

Open access