Browse

You are looking at 1 - 10 of 456 items for :

  • Weather, Climate, and Society x
  • Refine by Access: Content accessible to me x
Clear All
Camilla Risvoll, Grete K. Hovelsrud, and Jan Åge Riseth

Abstract

Rapid and interacting change poses an increasing threat to livelihoods and food production, and pastoralists in Nordland, northern Norway, are at a crossroads both economically and culturally. Some of these changes are localized and pertain to changing weather and grazing conditions caused by climate change and land fragmentation. Others, driven by national management policies and governance specifically related to predators, are poorly adjusted for the different and localized contexts. The pastoralists are inherently adaptive and have a long history of responding well to variable changing conditions. This is now changing with the continued increasing pressures from many directions. The central government systematically ignores pastoralists’ traditional knowledge and enforces narrow sector policies to be implemented at regional and local levels. We address the effect of how institutional, physical, and societal constraints challenge pastoralists’ prospects for sustainable adaptation. Our results show how pastoralists’ livelihoods become compromised and potentially threatened because they are forced to respond in ways that they know are counterproductive in the long run. Adaptation outcomes are affected by different approaches and epistemologies that are situated across scale and context in terms of regional and national regulations versus local empirical reality among the pastoral communities. This study concludes that radical change is needed toward a more holistic governance in which multiple knowledge systems are integrated to ensure sustainable adaptation at all levels. This study is based on extensive and long-term fieldwork among reindeer herders and sheep farmers in Nordland, through a collaborative process of knowledge coproduction.

Open access
Ling Tan and David M. Schultz

Abstract

Because many viral respiratory diseases show seasonal cycles, weather conditions could affect the spread of coronavirus disease 2019 (COVID-19). Although many studies pursued this possible link early in the pandemic, their results were inconsistent. Here, we assembled 158 quantitative empirical studies examining the link between weather and COVID-19. A metaregression analysis was performed on their 4793 correlation coefficients to explain these inconsistent results. We found four principal findings. First, 80 of the 158 studies did not state the time lag between infection and reporting, rendering these studies ineffective in determining the weather–COVID-19 relationship. Second, the research outcomes depended on the statistical analysis methods employed in each study. Specifically, studies using correlation tests produced outcomes that were functions of the geographical locations of the data from the original studies, whereas studies using linear regression produced outcomes that were functions of the analyzed weather variables. Third, Asian countries had more positive associations for air temperature than other regions, possibly because the air temperature was undergoing its seasonal increase from winter to spring during the rapid outbreak of COVID-19 in these countries. Fourth, higher solar energy was associated with reduced COVID-19 spread, regardless of statistical analysis method and geographical location. These results help to interpret the inconsistent results and motivate recommendations for best practices in future research. These recommendations include calculating the effects of a time lag between the weather and COVID-19, using regression analysis models, considering nonlinear effects, increasing the time period considered in the analysis to encompass more variety of weather conditions and to increase sample size, and eliminating multicollinearity between weather variables.

Significance Statement

Many respiratory viruses have seasonal cycles, and COVID-19 may, too. Many studies have tried to determine the effects of weather on COVID-19, but results are often inconsistent. We try to understand this inconsistency through statistics. For example, half of the 158 studies we examined did not account for the time lag between infection and reporting a COVID-19 case, which would make these studies flawed. Other studies showed that more COVID-19 cases occurred at higher temperatures in Asian countries, likely because the season was changing from winter to spring as the pandemic spread. We conclude with recommendations for future studies to avoid these kinds of pitfalls and better inform decision-makers about how the pandemic will evolve in the future.

Open access
Karin Marie Antonsen, Brigt Dale, and Stephanie Mayer

Abstract

In 2018, tourism was the fastest growing sector in the world, accounting for 10% of all jobs worldwide and 10.4% of the world’s gross domestic product. Tourism is often cited as a strategy for future development at national, regional, and local levels. This paper takes a closer look at the Lofoten Islands in northern Norway, where the increase in nature-based tourism over the last two decades has occurred in parallel with the restructuring of the traditional fisheries. Nature-based tourism in rural regions relies heavily on a broad range of ecosystem services (ES). This paper will present how stakeholders in nature-based tourism assess the influence of climate change on ES crucial for their activities and for the destination and will outline and explain how the practitioners perceive their ability to withstand or adapt to these changes. With the aid of models depicting potential future climate scenarios, we initiated discussions with stakeholders and found that tourism actors have only to a minor degree sought to develop strategies to increase adaptive capacity and therefore resilience to climate change. Based on our findings, we discuss how the adaptive capacity of individual actors in nature-based tourism forms the basis for the system’s resilience, and that a general resilience focus also forms the basis for transformational capacity, a capacity needed for future resilience. In light of our findings and analyses, we will conclude by reflecting on overarching systemic transformative tendencies in the wake of coronavirus disease 2019 (COVID-19) and obligations contained in the Paris Agreement on reducing global emissions.

Open access
Max Martin, S. Abhilash, Vijaykumar Pattathil, R. Harikumar, N. T. Niyas, T. M. Balakrishnan Nair, Yatin Grover, and Filippo Osella

Abstract

Ocean State Forecasts contribute to safe and sustainable fishing in India, but their usage among artisanal fishers is often limited. Our research in Thiruvananthapuram district in the southern Indian state of Kerala tested forecast quality and value and how fishers engage with forecasts. In two fishing villages, we verified forecast accuracy, skill, and reliability by comparing forecasts with observations during the 2018 monsoon season (June–September; n = 122). We assessed forecast value by analyzing fishers’ perceptions of weather and risks and the way they used forecasts based on 8 focus group discussions, 20 interviews, conversations, and logs of 10 fishing boats. We find that while forecasts are mostly accurate, inadequate forecasting of unusual events (e.g., wind >45 km h−1) and frequent fishing restrictions (n = 32) undermine their value. Fishers seek more localized and detailed forecasts, but they do not always use them. Weather forecasts are just one of the tools artisanal fishers deploy, used not simply to decide as to whether to go to sea but also to manage potential risks, allowing them to prepare for fishing under hazardous conditions. Their decisions are also based on the availability of fish and their economic needs. From our findings, we suggest that political, economic, and social marginality of south Indian fishers influences their perceptions and responses to weather-related risks. Therefore, improving forecast usage requires not only better forecast skill and wide dissemination of tailor-made weather information, but also better appreciation of risk cultures and the livelihood imperatives of artisanal fishing communities.

Open access
Alexia Karwat and Christian L. E. Franzke

Abstract

Over the last few decades, heat waves have intensified and have led to excess mortality. While the probability of being affected by heat stress has significantly increased, the risk of heat mortality is rarely quantified. This quantification of heat mortality risk is necessary for systematic adaptation measures. Furthermore, heat mortality records are sparse and short, which presents a challenge for assessing heat mortality risk for future climate projections. It is therefore crucial to derive indicators for a systematic heat mortality risk assessment. Here, risk indicators based on temperature and mortality data are developed and applied to major cities in Germany, France, and Spain using regional climate model simulations. Bias-corrected daily maximum, minimum, and wet-bulb temperatures show increasing trends in future climate projections for most considered cities. In addition, we derive a relationship between daily maximum temperatures and mortality for producing future projections of heat mortality risk from extreme temperatures that is based on low (representative concentration pathway RCP2.6) and high (RCP8.5) emission scenario future climate projections. Our results illustrate that heat mortality increases by about 0.9% decade−1 in Germany, 1.7% decade−1 in France, and 7.9% decade−1 in Spain for RCP8.5 by 2050. The future climate projections also show that wet-bulb temperatures above 30°C will be reached regularly, with maxima above 40°C likely by 2050. Our results suggest a significant increase of heat mortality in the future, especially in Spain. On average, our results indicate that the mortality risk trend is almost 2 times as high in all three countries for the RCP8.5 scenario relative to RCP2.6.

Open access
Emma Austin, Anthony S. Kiem, Jane Rich, David Perkins, and Brian Kelly

Abstract

Drought is a global threat to public health. Increasingly, the impact of drought on mental health and well-being is being recognized. This paper investigates the relationship between drought and well-being to determine which drought indices most effectively capture well-being outcomes. A thorough understanding of the relationship between drought and well-being must consider the (i) three aspects of drought (duration, frequency, and magnitude); (ii) different types of drought (meteorological, agricultural, etc.); and (iii) the individual context of specific locations, communities, and sectors. For this reason, we used a variety of drought types, drought indices, and time windows to identify the thresholds for wet and dry epochs that enhance and suppress impacts to well-being. Four postcodes in New South Wales (NSW), Australia, are used as case studies in the analysis to highlight the spatial variability in the relationship between drought and well-being. The results demonstrate that the relationship between drought indices and well-being outcomes differs temporally, spatially, and according to drought type. This paper objectively tests the relationship between commonly used drought indices and well-being outcomes to establish whether current methods of quantifying drought effectively capture well-being outcomes. For funding, community programs, and interventions to result in successful adaptation, it is essential to critically choose which drought index, time window, and well-being outcome to use in empirical studies. The uncertainties associated with these relationships must be accounted for, and it must also be realized that results will differ on the basis of these decisions.

Open access
Anna Heidenreich, Martin Buchner, Ariane Walz, and Annegret H. Thieken

Abstract

Heat waves are increasingly common in many countries across the globe, and also in Germany, where this study is set. Heat poses severe health risks, especially for vulnerable groups such as the elderly and children. This case study explores visitors’ behavior and perceptions during six weekends in the summer of 2018 at a 6-month open-air horticultural show. Data from a face-to-face survey (n = 306) and behavioral observations (n = 2750) were examined by using correlation analyses, ANOVA, and multiple regression analyses. Differences in weather perception, risk awareness, adaptive behavior, and activity level were observed between rainy days (maximum daily temperature < 25°C), warm summer days (25°–30°C), and hot days (>30°C). Respondents reported a high level of heat risk awareness, but most (90%) were unaware of actual heat warnings. During hot days, more adaptive measures were reported and observed. Older respondents reported taking the highest number of adaptive measures. We observed the highest level of adaptation in children, but they also showed the highest activity level. From our results we discuss how to facilitate individual adaptation to heat stress at open-air events by taking the heterogeneity of visitors into account. To mitigate negative health outcomes for citizens in the future, we argue for tailored risk communication aimed at vulnerable groups.

Open access
Natasha Simonee, Jayko Alooloo, Natalie Ann Carter, Gita Ljubicic, and Jackie Dawson

Abstract

As Inuit hunters living in Pond Inlet, Nunavut, we (N. Simonee and J. Alooloo) travel extensively on land, water, and sea ice. Climate change, including changing sea ice and increasingly unpredictable weather patterns, has made it riskier and harder for us to travel and hunt safely. Inuit knowledge supporting safe travel is also changing and is shared less between generations. We increasingly use online weather, marine, and ice products to develop locally relevant forecasts. This helps us to make decisions according to wind, waves, precipitation, visibility, sea ice conditions, and floe edge location. We apply our forecasts and share them with fellow community members to support safe travel. In this paper, we share the approach that we developed from over a decade of systematically and critically assessing forecasting products such as Windy.com, weather and marine forecasts, tide tables, C-CORE’s floe edge monitoring service, SmartICE, Zoom Earth, and time-lapse cameras. We describe the strengths and challenges we face when accessing, interpreting, and applying each product throughout different seasons. Our analysis highlights a disconnect between available products and local needs. This disconnect can be overcome by service providers adjusting services to include more seasonal and real-time information, nontechnical language, familiar units of measurement, data size proportional to internet access cost and speed, and clear relationships between weather, marine, and ice information and safe travel. Our findings have potential relevance in the circumpolar Arctic and beyond, wherever people combine Indigenous weather forecasting methods and online information for decision-making. We encourage service providers to improve product relevance and accessibility.

Open access
Victoria A. Johnson, Kimberly E. Klockow-McClain, Randy A. Peppler, and Angela M. Person

Abstract

Residents of the Oklahoma City metropolitan area are frequently threatened by tornadoes. Previous research indicates that perceptions of tornado threat affect behavioral choices when severe weather threatens and, as such, are important to study. In this paper, we examine the potential influence of tornado climatology on risk perception. Residents across central Oklahoma were surveyed about their perceptions of tornado proneness for their home location, and this was compared with the local tornado climatology. Mapping and programming tools were then used to identify relationships between respondents’ perceptions and actual tornado events. Research found that some dimensions of the climatology, such as tornado frequency, nearness, and intensity, have complex effects on risk perception. In particular, tornadoes that were intense, close, and recent had the strongest positive influence on risk perception, but weaker tornadoes appeared to produce an “inoculating” effect. Additional factors were influential, including sharp spatial discontinuities between neighboring places that were not tied to any obvious physical feature or the tornado climatology. Respondents holding lower perceptions of risk also reported lower rates of intention to prepare during tornado watches. By studying place-based perceptions, this research aims to provide a scientific basis for improved communication efforts before and during tornado events and for identifying vulnerable populations.

Open access
Y. G. Tao, F. Zhang, W. J. Liu, and C. Y. Shi

Abstract

Understanding tourists’ perceptions of climate is essential to improving tourist satisfaction and destination marketing. This paper constructs a sentiment analysis framework for tourists’ perceptions of climate using not only continuous climate data but also short-term weather data. Based on Chinese social media platform Sina Weibo, we found that Chinese tourists’ perceptions of climate change were at an initial stage of development. The accuracies of word segmentation between sentiment and nonsentiment words using ROST content mining (CM), BosonNLP, and GooSeeker were all high, and the three gradually decreased. The positively expressed sentences accounted for 79.80% of the entire text using ROST emotion analysis (EA), and the sentiment score was 0.784 at the intermediate level using artificial neural networks. The results indicate that the perceived emotional map is generally consistent with the actual climate and that cognitive evaluation theory is suitable to study text on climate perception.

Open access