Browse

You are looking at 1 - 10 of 14,352 items for :

  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All
David C. Fritts, Thomas S. Lund, Kam Wan, and Han-Li Liu

Abstract

A companion paper by Lund et al. employed a compressible model to describe the evolution of mountain waves arising due to increasing flow with time over the southern Andes, their breaking, secondary gravity waves and acoustic waves arising from these dynamics, and their local responses. This paper describes the mountain wave, secondary gravity wave, and acoustic wave vertical fluxes of horizontal momentum, and the local and large-scale three-dimensional responses to gravity breaking and wave–mean-flow interactions accompanying this event. Mountain wave and secondary gravity wave momentum fluxes and deposition vary strongly in space and time due to variable large-scale winds and spatially localized mountain wave and secondary gravity wave responses. Mountain wave instabilities accompanying breaking induce strong, local, largely zonal forcing. Secondary gravity waves arising from mountain wave breaking also interact strongly with large-scale winds at altitudes above ~80 km. Together, these mountain wave and secondary gravity wave interactions reveal systematic gravity wave–mean-flow interactions having implications for both mean and tidal forcing and feedbacks. Acoustic waves likewise achieve large momentum fluxes, but typically imply significant responses only at much higher altitudes.

Open access
Volkmar Wirth and Christopher Polster

Abstract

The waveguidability of an upper-tropospheric zonal jet quantifies its propensity to duct Rossby waves in the zonal direction. This property has played a central role in previous attempts to explain large wave amplitudes and the subsequent occurrence of extreme weather. In these studies, waveguidability was diagnosed with the help of ray tracing arguments using the zonal average of the observed flow as the relevant background state. Here, it is argued that this method is problematic both conceptually and mathematically. The issue is investigated in the framework of the nondivergent barotropic model. This model allows the straightforward computation of an alternative “zonalized” background state, which is obtained through conservative symmetrization of potential vorticity contours and that is argued to be superior to the zonal average. Using an idealized prototypical flow configuration with large-amplitude eddies, it is shown that the two different choices for the background state yield very different results; in particular, the zonal-mean background state diagnoses a zonal waveguide, while the zonalized background state does not. This result suggests that the existence of a waveguide in the zonal-mean background state is a consequence of, rather than a precondition for, large wave amplitudes, and it would mean that the direction of causality is opposite to the usual argument. The analysis is applied to two heatwave episodes from summer 2003 and 2010, yielding essentially the same result. It is concluded that previous arguments about the role of waveguidability for extreme weather need to be carefully reevaluated to prevent misinterpretation in the future.

Open access
Georgios Deskos, Joseph C. Y. Lee, Caroline Draxl, and Michael A. Sprague

Abstract

We present a review of existing wind–wave coupling models and parameterizations used for large-eddy simulation of the marine atmospheric boundary layer. The models are classified into two main categories: (i) the wave-phase-averaged, sea surface–roughness models and (ii) the wave-phase-resolved models. Both categories are discussed from their implementation, validity, and computational efficiency viewpoints, with emphasis given on their applicability in offshore wind energy problems. In addition to the various models discussed, a review of laboratory-scale and field-measurement databases is presented thereafter. The majority of the presented data have been gathered over many decades of studying air–sea interaction phenomena, with the most recent ones compiled to reflect an offshore wind energy perspective. Both provide valuable data for model validation. We also discuss the modeling knowledge gaps and computational challenges ahead.

Open access
Qiu Yang, L. Ruby Leung, Zhe Feng, Fengfei Song, and Xingchao Chen

Abstract

Mesoscale convective systems (MCSs) account for more than 50% of summer-time precipitation over the central United States (US) and have a significant impact on local weather and hydrologic cycle. It is hypothesized that the inadequate treatment of MCSs is responsible for the longstanding warm and dry bias over the central US in coarse-resolution general circulation model (GCM) simulations. In particular, a better understanding of MCS initiation is still lacking. Here a single-column Lagrangian parcel model is first developed to simulate the basic features of a rising parcel. This simple model demonstrates the collective effects of boundary layer moistening and dynamical lifting in triggering convective initiation and reproduces successfully its early afternoon peak with surface equivalent potential temperature as a controlling factor. It also predicts that convection is harder to trigger in the future climate under global warming, consistent with the results from convection-permitting regional climate simulations. Then a multi-column model that includes an array of single-column models aligned in the east-west direction and incorporates idealized cold pool interaction mechanisms is developed. The multi-column model captures readily the cold pool induced upscale growth feature in MCS genesis from initially scattered convection that is organized into a mesoscale cluster in a few hours. It also highlights the crucial role of lifting effects due to cold pool collision and spreading, subsidence effect, and gust front propagation speed in controlling the final size of mesoscale clusters and cold pool regions. This simple model should be useful for understanding fundamental mechanisms of MCS initiation and providing guidance for improving MCS simulations in GCMs.

Open access
Sonia Lasher-Trapp, Enoch Jo, Luke R. Allen, Bryan N. Engelsen, and Robert J. Trapp

Abstract

The current study identifies and quantifies various mechanisms of entrainment, and their diluting effects, in the developing and mature stages of a simulated supercell thunderstorm. The two stages, differentiated by the lack or presence of a rotating updraft, are shown to entrain air by different, but related mechanisms that result from the strong vertical wind shear of the environment. The greatest entrainment rates in the developing stage result from the asymmetric overturning of large eddies near cloud top on the downshear side. These rates are greater than those published in the literature for cumuli developing in environments lacking strong shear. Although the entrainment rate increases exponentially in time throughout the developing stage, successive cloud turrets help to replenish some of the lost buoyancy and condensate, allowing the nascent storm to develop further. During the mature stage, the greatest entrainment rates occur via “ribbons” of horizontal vorticity wrapping around the rotating updraft that ascend in time. The smaller width of the ribbons in comparison to the wider storm core limits their dilutive effects. Passive tracers placed in the low-level air ingested by the mature storm indicate that on average 20% of the core contains some undiluted air from below the storm base, unaffected by any entrainment mechanism.

Open access
Free access
Ming-Dah Chou, Kyu-Tae Lee, Il-Sung Zo, Wei-Liang Lee, Chein-Jung Shiu, and Joon-Bum Jee

Abstract

A new k-distribution scheme without the assumption of the correlation between the absorption coefficients at different pressures is developed for solar heating due to water vapor and CO2. Grouping of spectral points is based on the observation that radiation at spectral points with a large absorption coefficient is quickly absorbed to heat the stratosphere, and the heating below is attributable to the absorption of the solar radiation at the remaining spectral points. By grouping the spectral points with a large absorption coefficient at low pressures, the range of the absorption coefficient of the remaining spectral points is narrowed, and the k-distribution approximation can be accurately applied to compute solar heating in both the stratosphere and troposphere. Grouping of the spectral points is based on the absorption coefficient at a couple of reference pressures where heating is significant. With a total number of 52 spectral groups in the water vapor and CO2 bands, fluxes and heating rates were calculated for various solar zenith angles in some typical and sampled atmospheres in diverse climatic regimes and seasons. The maximum heating rate difference between the k-distribution and line-by-line calculations is <0.09 K day−1 for water vapor and <0.2 K day−1 for CO2. The difference in the surface radiation is ~1.4 W m−2 for water vapor and 0.6 W m−2 for CO2, while it could increase to 2.6 W m−2 due to overlapping absorption. These results can be improved by increasing the number of spectral groups at the expense of computational economy.

Open access
Kun Gao, Lucas Harris, Linjiong Zhou, Morris Bender, and Matthew Morin

Abstract

We investigate the sensitivity of hurricane intensity and structure to the horizontal tracer advection in the Geophysical Fluid Dynamics Laboratory (GFDL) Finite-Volume Cubed-Sphere Dynamical Core (FV3). We compare two schemes, a monotonic scheme and a less diffusive positive-definite scheme. The positive-definite scheme leads to significant improvement in the intensity prediction relative to the monotonic scheme in a suite of 5-day forecasts that mostly consist of rapidly intensifying hurricanes. Notable storm structural differences are present: the radius of maximum wind (RMW) is smaller and eyewall convection occurs farther inside the RMW when the positive-definite scheme is used. Moreover, we find that the horizontal tracer advection scheme affects the eyewall convection location by affecting the moisture distribution in the inner-core region. This study highlights the importance of dynamical core algorithms in hurricane intensity prediction.

Open access
Andreas Dörnbrack

Abstract

Planetary waves disturbed the hitherto stable Arctic stratospheric polar vortex in the middle of January 2016 in such a way that unique tropospheric and stratospheric flow conditions for vertically and horizontally propagating mountain waves developed. Coexisting strong low-level westerly winds across almost all European mountain ranges plus the almost zonally aligned polar-front jet created these favorable conditions for deeply propagating gravity waves. Furthermore, the northward displacement of the polar night jet resulted in a widespread coverage of stratospheric mountain waves trailing across Northern Europe. This paper describes the particular meteorological setting by analyzing the tropospheric and stratospheric flows based on the ERA5 data. The potential of the flow for exciting internal gravity waves from nonorographic sources is evaluated across all altitudes by considering various indices to indicate flow imbalances as δ, Ro, Roζ, Ro, and ΔNBE. The analyzed gravity waves are described and characterized. The main finding of this case study is the exceptionally vast extension of the mountain waves trailing to high latitudes originating from the flow across the mountainous sources that are located at about 45°N. The magnitudes of the simulated stratospheric temperature perturbations attain values larger than 10 K and are comparable to values as documented by recent case studies of large-amplitude mountain waves over South America. The zonal means of the resolved and parameterized stratospheric wave drag during the mountain wave event peak at −4.5 and −32.2 m s−1 day−1, respectively.

Open access
Tsung-Lin Hsieh, Chiung-Yin Chang, Isaac M. Held, and Pablo Zurita-Gotor

Abstract

Although classical theories of midlatitude momentum fluxes focus on the wave-mean flow interaction, wave-wave interactions may be important for generating long waves. It is shown in this study that this nonlinear generation has implications for eddy momentum fluxes in some regimes. Using a two-layer quasi-geostrophic model of a baroclinic jet on a β-plane, statistically steady states are explored in which the vertically integrated eddy momentum flux is divergent at the center of the jet, rather than convergent as in Earth-like climates. One moves towards this less familiar climate from more Earth-like settings by reducing either β, frictional drag, or the width of the baroclinic zone, or by increasing the upper bound of resolvable wavelengths by lengthening the zonal channel. Even in Earth-like settings, long waves diverge momentum from the jet, but they are too weak to compete with short unstable waves that converge momentum. We argue that long waves are generated by breaking of short unstable waves near their critical latitudes, where long waves converge momentum while diverging momentum at the center of the jet. Quasi-linear models with no wave-wave interaction can qualitatively capture the Earth-like regime but not the regime with momentum flux divergence at the center of the jet, because the nonlinear wave breaking and long wave generation processes are missing. Therefore, a more comprehensive theory of atmospheric eddy momentum fluxes should take into account the nonlinear dynamics of long waves.

Open access