Browse

You are looking at 1 - 10 of 11,318 items for :

  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All
Hitoshi Matsui and Mingxu Liu

Abstract

Black carbon (BC) aerosol particles in the Arctic heat the atmosphere and snow/ice surfaces and may strengthen the snow-albedo feedback that amplifies Arctic warming. Model simulations of BC concentrations in the Arctic depend strongly on the representation of microphysical processes such as aging, activation, and wet removal. Most BC modeling studies have classified BC particles into hydrophobic BC, which cannot form cloud droplets, and hydrophilic BC, which can form cloud droplets, by assuming a globally constant critical supersaturation threshold value (S thre), without considering its consistency with cloud maximum supersaturation (S max). Here we show that it is essential to consider the consistency of S thre with S max in global model simulations to reduce uncertainties in near-surface ambient BC concentrations in the Arctic. Previous studies often obtained good agreement between simulated and observed near-surface Arctic BC mass concentrations when a low S thre (~0.1%) was assumed in their models. However, this S thre may be too low (activation and wet removal of BC may be underestimated) for the Arctic, because some recent observations and our model simulations suggest that S max may actually be higher (~0.3%) there. We also demonstrate that spatially varying S thre values and their consistency with S max, which previous studies did not consider, must be represented in models for more accurate estimation of BC budget in the Arctic. Because both S max and BC-aging speed depend on climatic conditions, our findings are an important step toward better simulations of BC impacts on past, present, and future Arctic climates.

Open access
Jane E. Smyth and Yi Ming

Abstract

Monsoons emerge over a range of land surface conditions and exhibit varying physical characteristics over the seasonal cycle, from onset to withdrawal. Systematically varying the moisture and albedo parameters over land in an idealized modeling framework allows one to analyze the physics underlying the successive stages of monsoon development. To this end, we implement an isolated South American continent with reduced heat capacity but no topography in an idealized moist general circulation model. Irrespective of the local moisture availability, the seasonal cycles of precipitation and circulation over the South American monsoon sector are distinctly monsoonal with the default surface albedo. The dry land case (zero evaporation) is characterized by a shallow overturning circulation with vigorous lower-tropospheric ascent, transporting water vapor from the ocean. By contrast, with bucket hydrology or unlimited land moisture, the monsoon features deep moist convection that penetrates the upper troposphere. A series of land albedo perturbation experiments indicates that the monsoon strengthens with the net column energy flux and the near-surface moist static energy with all land moisture conditions. When the land–ocean thermal contrast is strong enough, inertial instability alone is sufficient for producing a shallow but vigorous circulation and converging a large amount of moisture from the ocean even in the absence of land moisture. Once the land is sufficiently moist, convective instability takes hold and the shallow circulation deepens. These results have implications for monsoon onset and intensification, and may elucidate the seasonal variations in how surface warming impacts tropical precipitation over land.

Open access
Free access
Gloria L. Manney, Michelle L. Santee, Zachary D. Lawrence, Krzysztof Wargan, and Michael J. Schwartz

Abstract

A comprehensive investigation of the climatology of and interannual variability and trends in the Asian summer monsoon anticyclone (ASMA) is presented, based on a novel area and moments analysis. Moments include centroid location, aspect ratio, angle, and “excess kurtosis” (measuring how far the shape is from elliptical) for an equivalent ellipse with the same area as the ASMA. Key results are robust among the three modern reanalyses studied. The climatological ASMA is nearly elliptical, with its major axis aligned along its centroid latitude and a typical aspect ratio of ~5–8. The ASMA centroid shifts northward with height, northward and westward during development, and in the opposite direction as it weakens. New evidence finding no obvious climatological bimodality in the ASMA reinforces similar suggestions from previous studies using modern reanalyses. Most trends in ASMA moments are not statistically significant. ASMA area and duration, however, increased significantly during 1979–2018; the 1958–2018 record analyzed for one reanalysis suggests that these trends may have accelerated in recent decades. ASMA centroid latitude is significantly positively (negatively) correlated with subtropical jet-core latitude (altitude), and significantly negatively correlated with concurrent ENSO; these results are consistent with and extend previous work relating monsoon intensity, ENSO, and jet shifts. ASMA area is significantly positively correlated with the multivariate ENSO index 2 months previously. These results improve our understanding of the ASMA using consistently defined diagnostics of its size, geometry, interannual variability, and trends that have not previously been analyzed.

Open access
Matthias Röthlisberger, Mauro Hermann, Christoph Frei, Flavio Lehner, Erich M. Fischer, Reto Knutti, and Heini Wernli

Abstract

Previous studies have recognized the societal relevance of climatic extremes on the seasonal time scale and examined physical processes leading to individual high-impact extreme seasons (e.g., extremely wet or warm seasons). However, these findings have not yet been generalized beyond case studies since at any specific location only very few seasonal events of such rarity occurred in the observational record. In this concept paper, a pragmatic approach to pool seasonal extremes across space is developed and applied to investigate hot summers and cold winters in ERA-Interim and the Community Earth System Model Large Ensemble (CESM-LENS). We identify spatial extreme season objects as contiguous regions of extreme seasonal mean temperatures based on statistical modeling. Regional pooling of extreme season objects in CESM-LENS then yields considerable samples of analogs to even the most extreme ERA-Interim events. This approach offers numerous opportunities for systematically analyzing large samples of extreme seasons, and several such analyses are illustrated. We reveal a striking co-occurrence of El Niño to La Niña transitions and the largest ERA-Interim midlatitude extreme summer events. Moreover, we perform a climate model evaluation with regard to extreme season size and intensity measures and estimate how often an extreme winter like the cold North American 2013/14 winter is expected anywhere in midlatitude regions. Furthermore, we present a large set of simulated analogs to this event, which makes it possible to study commonalities and differences of their underlying physical processes. Finally, substantial but spatially varying climatological differences in the size of extreme summer and extreme winter objects are identified.

Open access
Zhibo Li, Ying Sun, Tim Li, Wen Chen, and Yihui Ding

Abstract

The South Asian summer monsoon (SASM) is one of the most crucial climate components in boreal summer. The future potential changes in the SASM have great importance for climate change adaption and policy setting in this populous region. To understand the SASM changes and their link with the global warming of 1.5°–5°C above the preindustrial level, we investigate the changes in the SASM circulation and precipitation based on a large-ensemble simulation conducted with Canadian Earth System Model version 2 (CanESM2). With the global mean surface temperature (GMST) increase, the large-ensemble mean of SASM circulation is projected to weaken almost linearly while the precipitation and precipitable water are projected to enhance quasi-linearly. A double anticyclone along the tropical Indian Ocean is a major anomalous circulation pattern for each additional degree of warming and is responsible for the weakening of the lower-level westerlies. The decreased upper-level land–sea thermal contrast (TCupper) is the main thermal driver for the weakening of the SASM circulation while the lower-level thermal contrast contributes little. The nonlinearly decreased TCupper is mainly related to the temperature response to the increased CO2 forcing and convection-induced latent heat release in the tropics. The increase in the SASM precipitation is mainly due to the quasi-linearly increased positive contribution of the thermodynamic component, while the dynamic component has a negative impact. Both horizontal moisture advection and moisture convergence contribute to the precipitation increase, and moisture convergence plays a dominant role. These results provide new insight that the SASM changes can be roughly scaled by the GMST changes.

Open access
Bin Tang, Wenting Hu, and Anmin Duan

Abstract

Precipitation extremes over the Indochina and South China (INCSC) region simulated by 40 global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) were quantitatively assessed based on the skill score metrics of four extreme precipitation indices when compared with observational results from a high-resolution daily precipitation dataset for 1958–2014. The results show that it is difficult for most of the CMIP6 models to reproduce the observed spatial pattern of extreme precipitation indices in the INCSC region. The interannual variability of the extreme precipitation indices is relatively better simulated for South China than for Indochina. In general, most of the CMIP6 models perform better in South China compared with Indochina when taking both the simulations of spatial pattern and interannual variability into consideration. Only three models (EC-EARTH3, EC-EARTH3-Veg, and NorESM2-MM) can successfully reproduce both the spatial pattern and the interannual variability for the INCSC region. Through model ranking, the multimodel ensemble generated by a selection of the most skillful models leads to a more realistic simulation of the extreme precipitation indices both in South China and Indochina. Better simulation of the meridional wind component over South China and the water vapor convergence over Indochina can partly reduce the wet biases, resulting in a more realistic simulation of extreme precipitation indices over the INCSC region.

Open access
Jie Jiang, Tianjun Zhou, Xiaolong Chen, and Bo Wu

Abstract

Known as one of the largest semiarid to arid regions in the world, central Asia and its economy and ecosystem are highly sensitivity to the changes in precipitation. The observed precipitation and related hydrographic characteristics have exhibited robust decadal variations in the past decades, but the reason remains unknown. Using the pacemaker experiments of the Community Earth System Model (CESM1.2), we find that the tropical Pacific decadal variability (TPDV) and the Atlantic multidecadal variability (AMV) are the main drivers of the interdecadal variations in central Asian precipitation during 1955–2004. Both the decadal-scale warming of the tropical Pacific and North Atlantic are favorable for wetter conditions over central Asia. The positive TPDV is accompanied with high sea level pressure (SLP) over the Indo–western Pacific warm pool. Southwesterly winds along the northwestern flank of the high SLP can transport more moisture to southeastern central Asia. The warm AMV can excite a circumglobal teleconnection (CGT) pattern. A trough node of the CGT to the west of central Asia drives an anomalous ascending motion and increased precipitation over this region. The results based on the CESM model are further demonstrated by the pacemaker experiments of MRI-ESM2-0. Based on the observational TPDV and AMV indices, we reasonably reconstruct the historical precipitation over central Asia. Our results provide hints for the decadal prediction of precipitation over central Asia.

Open access
Minghao Yang, Chongyin Li, Xiong Chen, Yanke Tan, Xin Li, Chao Zhang, and Guiwan Chen

Abstract

The reproducibility of climatology and the midwinter suppression of the cold-season North Pacific storm track (NPST) in historical runs of 18 CMIP6 models is evaluated against the NCEP reanalysis data. The results show that the position of the climatological peak area of 850-hPa meridional eddy heat flux (υT850) is well captured by these models. The spatial patterns of climatological υT850 are basically consistent with the NCEP reanalysis. Generally, NorESM2-LM and CESM2-WACCM present a relatively strong capability to reproduce the climatological amplitude of υT850 with lower RMSE than the other models. Compared with CMIP5 models, the intermodel spread of υT850 climatology among the CMIP6 models is smaller, and their multimodel ensemble is closer to the NCEP reanalysis. The geographical distribution in more than half of the selected models is farther south and east. For the subseasonal variability of υT850, nearly half of the models exhibit a double-peak structure. In contrast, the apparent midwinter suppression in the NPST represented by the 250-hPa filtered meridional wind variance (υυ250) is reproduced by all the selected models. In addition, the present study investigates the possible reasons for simulation biases regarding climatological NPST amplitude. It is found that a higher model horizontal resolution significantly intensifies the climatological υυ250. There is a significant in-phase relationship between climatological υυ250 and the intensity of the East Asian winter monsoon (EAWM). However, the climatological υT850 is not sensitive to the model grid spacing. Additionally, the climatological low-tropospheric atmospheric baroclinicity is uncorrelated with climatological υυ250. The stronger climatological baroclinic energy conversion is associated with the stronger climatological υT850.

Open access
David Coe, Mathew Barlow, Laurie Agel, Frank Colby, Christopher Skinner, and Jian-Hua Qian

Abstract

A k-means clustering method is applied to daily ERA5 500-hPa heights, sea level pressure, and 850-hPa winds, 1979–2008, to identify characteristic weather types (WTs) for September–November for the northeast United States. The resulting WTs are analyzed in terms of structure, frequency of occurrence, typical progressions, precipitation and temperature characteristics, and relation to teleconnections. The WTs are used to make a daily circulation-based distinction between early and late autumn and consider shifts in seasonality. Seven WTs are identified for the autumn season, representing a range of trough and ridge patterns. The largest average values of precipitation and greatest likelihood of extremes occur in the Midwestern Trough and Atlantic Ridge patterns. The greatest likelihood of extreme temperatures occurs in the Northeast Ridge. Some WTs are strongly associated with the phase of the North Atlantic Oscillation and Pacific–North America pattern, with frequency of occurrence for several WTs changing by more than a factor of 2. The two most common progressions between the WTs are one most frequent in September, Mid-Atlantic Trough to Northeast Ridge to Mid-Atlantic Trough, and one most frequent in mid-October–November, Midwestern Trough to Northeast Trough to Midwestern Trough. This seasonality allows for a daily WT-based distinction between early and late season. A preliminary trend analysis indicates an increase in early season WTs later in the season and a decrease in late season WTs earlier in the season; that is, a shift toward a longer period of warm season patterns and a shorter, delayed period of cold season patterns.

Open access