Browse
Abstract
Improving estimation of snow water equivalent rate (SWER) from radar reflectivity (Ze), known as a SWER(Ze) relationship, is a priority for NASA’s Global Precipitation Measurement (GPM) mission ground validation program as it is needed to comprehensively validate spaceborne precipitation retrievals. This study investigates the performance of eight operational and four research-based SWER(Ze) relationships utilizing Precipitation Imaging Probe (PIP) observations from the International Collaborative Experiment for Pyeongchang 2018 Olympic and Paralympic Winter Games (ICE-POP 2018) field campaign. During ICE-POP 2018, there were 10 snow events that are classified by synoptic conditions as either cold low or warm low, and a SWER(Ze) relationship is derived for each event. Additionally, a SWER(Ze) relationship is derived for each synoptic classification by merging all events within each class. Two new types of SWER(Ze) relationships are derived from PIP measurements of bulk density and habit classification. These two physically based SWER(Ze) relationships provided superior estimates of SWER when compared to the operational, event-specific, and synoptic SWER(Ze) relationships. For estimates of the event snow water equivalent total, the event-specific, synoptic, and best-performing operational SWER(Ze) relationships outperformed the physically based SWER(Ze) relationship, although the physically based relationships still performed well. This study recommends using the density or habit-based SWER(Ze) relationships for microphysical studies, whereas the other SWER(Ze) relationships are better suited toward hydrologic application.
Abstract
Improving estimation of snow water equivalent rate (SWER) from radar reflectivity (Ze), known as a SWER(Ze) relationship, is a priority for NASA’s Global Precipitation Measurement (GPM) mission ground validation program as it is needed to comprehensively validate spaceborne precipitation retrievals. This study investigates the performance of eight operational and four research-based SWER(Ze) relationships utilizing Precipitation Imaging Probe (PIP) observations from the International Collaborative Experiment for Pyeongchang 2018 Olympic and Paralympic Winter Games (ICE-POP 2018) field campaign. During ICE-POP 2018, there were 10 snow events that are classified by synoptic conditions as either cold low or warm low, and a SWER(Ze) relationship is derived for each event. Additionally, a SWER(Ze) relationship is derived for each synoptic classification by merging all events within each class. Two new types of SWER(Ze) relationships are derived from PIP measurements of bulk density and habit classification. These two physically based SWER(Ze) relationships provided superior estimates of SWER when compared to the operational, event-specific, and synoptic SWER(Ze) relationships. For estimates of the event snow water equivalent total, the event-specific, synoptic, and best-performing operational SWER(Ze) relationships outperformed the physically based SWER(Ze) relationship, although the physically based relationships still performed well. This study recommends using the density or habit-based SWER(Ze) relationships for microphysical studies, whereas the other SWER(Ze) relationships are better suited toward hydrologic application.
Abstract
Previous studies show that some soil moisture products have a good agreement with in situ measurements on the Tibetan Plateau (TP). However, the soil moisture response to precipitation variability in different products is yet to be assessed. In this study, we focus on the soil moisture response to precipitation variability across weekly to decadal time scales in satellite observations and reanalyses. The response of soil moisture to precipitation variability differs between products, with large uncertainties observed for variations in weekly accumulated precipitation. Using June 2009 as an example, weekly mean anomalous soil moisture varies by up to 25% between products. Across decadal time scales, soil moisture trends vary spatially and across different products. In light of the soil moisture response to precipitation at different time scales, we conclude that remote sensing products developed as part of the European Space Agency’s (ESA) Water Cycle Multimission Observation Strategy and Soil Moisture Climate Change Initiative (CCI) projects are the most reliable, followed by the Global Land Evaporation Amsterdam Model (GLEAM) dataset. Even products that strongly agree with in situ observations on daily time scales, such as the Global Land Data Assimilation System (GLDAS), show inconsistent soil moisture responses to decadal precipitation trends. European Centre for Medium-Range Weather Forecasts (ECWMF) reanalysis products have a relatively poor agreement with in situ observations compared to satellite observations and land-only reanalysis datasets. Unsurprisingly, products which show a consistent soil moisture response to precipitation variability are those mostly aligned to observations or describe the physical relationship between soil moisture and precipitation well.
Significance Statement
We focus on soil moisture responses to precipitation across weekly to decadal time scales by using multiple satellite observations and reanalysis products. Several soil moisture products illustrate good consistency with in situ measurements in different biomes on the Tibetan Plateau, while the response to precipitation variability differs between products, with large uncertainties observed for variations in weekly accumulated precipitation. The response of soil moisture to decadal trends in boreal summer precipitation varies spatially and temporally across products. Based on the assessments of the soil moisture response to precipitation variability across different time scales, we conclude that remote sensing products developed as part of the European Space Agency’s Water Cycle Multimission Observation Strategy and Soil Moisture Climate Change Initiative (CCI) projects are the most reliable, followed by the Global Land Evaporation Amsterdam Model (GLEAM) dataset. Reanalysis products from ECWMF show inconsistent soil moisture responses to precipitation. The results highlight the importance of using multiple soil moisture products to understand the surface response to precipitation variability and to inform developments in soil moisture modeling and satellite retrievals.
Abstract
Previous studies show that some soil moisture products have a good agreement with in situ measurements on the Tibetan Plateau (TP). However, the soil moisture response to precipitation variability in different products is yet to be assessed. In this study, we focus on the soil moisture response to precipitation variability across weekly to decadal time scales in satellite observations and reanalyses. The response of soil moisture to precipitation variability differs between products, with large uncertainties observed for variations in weekly accumulated precipitation. Using June 2009 as an example, weekly mean anomalous soil moisture varies by up to 25% between products. Across decadal time scales, soil moisture trends vary spatially and across different products. In light of the soil moisture response to precipitation at different time scales, we conclude that remote sensing products developed as part of the European Space Agency’s (ESA) Water Cycle Multimission Observation Strategy and Soil Moisture Climate Change Initiative (CCI) projects are the most reliable, followed by the Global Land Evaporation Amsterdam Model (GLEAM) dataset. Even products that strongly agree with in situ observations on daily time scales, such as the Global Land Data Assimilation System (GLDAS), show inconsistent soil moisture responses to decadal precipitation trends. European Centre for Medium-Range Weather Forecasts (ECWMF) reanalysis products have a relatively poor agreement with in situ observations compared to satellite observations and land-only reanalysis datasets. Unsurprisingly, products which show a consistent soil moisture response to precipitation variability are those mostly aligned to observations or describe the physical relationship between soil moisture and precipitation well.
Significance Statement
We focus on soil moisture responses to precipitation across weekly to decadal time scales by using multiple satellite observations and reanalysis products. Several soil moisture products illustrate good consistency with in situ measurements in different biomes on the Tibetan Plateau, while the response to precipitation variability differs between products, with large uncertainties observed for variations in weekly accumulated precipitation. The response of soil moisture to decadal trends in boreal summer precipitation varies spatially and temporally across products. Based on the assessments of the soil moisture response to precipitation variability across different time scales, we conclude that remote sensing products developed as part of the European Space Agency’s Water Cycle Multimission Observation Strategy and Soil Moisture Climate Change Initiative (CCI) projects are the most reliable, followed by the Global Land Evaporation Amsterdam Model (GLEAM) dataset. Reanalysis products from ECWMF show inconsistent soil moisture responses to precipitation. The results highlight the importance of using multiple soil moisture products to understand the surface response to precipitation variability and to inform developments in soil moisture modeling and satellite retrievals.
Abstract
In the postprocessing of ensemble forecasts of weather variables, it is standard practice to first calibrate the forecasts in a univariate setting, before reconstructing multivariate ensembles that have a correct covariability in space, time, and across variables, via so-called “reordering” methods. Within this framework though, postprocessors cannot fully extract the skill of the raw forecast that may exist at larger scales. A multi-temporal-scale modulation mechanism for precipitation is here presented, which aims at improving the forecasts over different accumulation periods, and which can be coupled with any univariate calibration and multivariate reordering techniques. The idea, originally known under the term “canonical events,” has been implemented for more than a decade in the Meteorological Ensemble Forecast Processor (MEFP), a component of the U.S. National Weather Service’s (NWS) Hydrologic Ensemble Forecast Service (HEFS), although users were left with material in the gray literature. This paper proposes a formal description of the mechanism and studies its intrinsic connection with the multivariate reordering process. The verification of modulated and unmodulated forecasts, when coupled with two popular methods for reordering, the Schaake shuffle and ensemble copula coupling (ECC), is performed on 11 Californian basins, on both precipitation and streamflow. Results demonstrate the clear benefit of the multi-temporal-scale modulation, in particular on multiday total streamflow. However, the relative gain depends on the method used for reordering, with more benefits expected when this latter method is not able to reconstruct an adequate temporal structure on the calibrated precipitation forecasts.
Abstract
In the postprocessing of ensemble forecasts of weather variables, it is standard practice to first calibrate the forecasts in a univariate setting, before reconstructing multivariate ensembles that have a correct covariability in space, time, and across variables, via so-called “reordering” methods. Within this framework though, postprocessors cannot fully extract the skill of the raw forecast that may exist at larger scales. A multi-temporal-scale modulation mechanism for precipitation is here presented, which aims at improving the forecasts over different accumulation periods, and which can be coupled with any univariate calibration and multivariate reordering techniques. The idea, originally known under the term “canonical events,” has been implemented for more than a decade in the Meteorological Ensemble Forecast Processor (MEFP), a component of the U.S. National Weather Service’s (NWS) Hydrologic Ensemble Forecast Service (HEFS), although users were left with material in the gray literature. This paper proposes a formal description of the mechanism and studies its intrinsic connection with the multivariate reordering process. The verification of modulated and unmodulated forecasts, when coupled with two popular methods for reordering, the Schaake shuffle and ensemble copula coupling (ECC), is performed on 11 Californian basins, on both precipitation and streamflow. Results demonstrate the clear benefit of the multi-temporal-scale modulation, in particular on multiday total streamflow. However, the relative gain depends on the method used for reordering, with more benefits expected when this latter method is not able to reconstruct an adequate temporal structure on the calibrated precipitation forecasts.
Abstract
The processes underlying heavy rainfall in the higher elevations of the Himalayas are still not well known despite their importance. Here, we examine the detailed process causing a heavy rainfall event, observed by our rain gauge network in the Rolwaling valley, eastern Nepal Himalayas, using ERA5 and a regional cloud-resolving numerical simulation. Heavy precipitation (112 mm day−1) was observed on 8 July 2019 at Dongang (2790 m above sea level). Most of the precipitation (81 mm) occurred during 1900–2300 local time (LT). The synoptic-scale environment is characterized by a monsoon low pressure system (LPS) over northeastern India. The LPS lifted moisture upward from the lower troposphere and then horizontally transported it into the eastern Nepal Himalayas within the middle troposphere, increasing the content of the water vapor around Dongang. A mesoscale convective system passed over Dongang around the time of the intense precipitation. The numerical simulation showed that surface heat fluxes prevailed under the middle tropospheric (∼500 hPa) southeasterly flow associated with the LPS around a mountain ridge on the upwind side of Dongang until 1900 LT, enhancing convective instability. Topographic lifting led to the release of the enhanced instability, which triggered the development of a mesoscale precipitation system. The southeasterly flow pushed the precipitation system northward, which then passed over Dongang during 2000–2200 LT, resulting in heavy precipitation. Thus, we conclude that the heavy precipitation came from the multiscale processes such as three-dimensional moisture transport driven by the LPS and the diurnal variation in heat fluxes from the land surface.
Significance Statement
Precipitation in the Himalayas is closely related to the hydrological cycle, floods, and landslide disasters in South Asia. Thus, elucidating the features of precipitation in the Himalayas is important. This study explored multiscale processes leading to a heavy precipitation event that was observed on 8 July 2019 at Dongang in the Rolwaling valley of the eastern Nepal Himalayas. We identified new processes producing heavy precipitation in the Himalayas: the three-dimensional synoptic-scale moisture transport driven by a monsoon low pressure system and the effect of the diurnal variation in heat fluxes from the land surface on the development and movement of a mesoscale precipitation system causing heavy precipitation. These findings broaden our understanding of heavy precipitation in the Himalayas.
Abstract
The processes underlying heavy rainfall in the higher elevations of the Himalayas are still not well known despite their importance. Here, we examine the detailed process causing a heavy rainfall event, observed by our rain gauge network in the Rolwaling valley, eastern Nepal Himalayas, using ERA5 and a regional cloud-resolving numerical simulation. Heavy precipitation (112 mm day−1) was observed on 8 July 2019 at Dongang (2790 m above sea level). Most of the precipitation (81 mm) occurred during 1900–2300 local time (LT). The synoptic-scale environment is characterized by a monsoon low pressure system (LPS) over northeastern India. The LPS lifted moisture upward from the lower troposphere and then horizontally transported it into the eastern Nepal Himalayas within the middle troposphere, increasing the content of the water vapor around Dongang. A mesoscale convective system passed over Dongang around the time of the intense precipitation. The numerical simulation showed that surface heat fluxes prevailed under the middle tropospheric (∼500 hPa) southeasterly flow associated with the LPS around a mountain ridge on the upwind side of Dongang until 1900 LT, enhancing convective instability. Topographic lifting led to the release of the enhanced instability, which triggered the development of a mesoscale precipitation system. The southeasterly flow pushed the precipitation system northward, which then passed over Dongang during 2000–2200 LT, resulting in heavy precipitation. Thus, we conclude that the heavy precipitation came from the multiscale processes such as three-dimensional moisture transport driven by the LPS and the diurnal variation in heat fluxes from the land surface.
Significance Statement
Precipitation in the Himalayas is closely related to the hydrological cycle, floods, and landslide disasters in South Asia. Thus, elucidating the features of precipitation in the Himalayas is important. This study explored multiscale processes leading to a heavy precipitation event that was observed on 8 July 2019 at Dongang in the Rolwaling valley of the eastern Nepal Himalayas. We identified new processes producing heavy precipitation in the Himalayas: the three-dimensional synoptic-scale moisture transport driven by a monsoon low pressure system and the effect of the diurnal variation in heat fluxes from the land surface on the development and movement of a mesoscale precipitation system causing heavy precipitation. These findings broaden our understanding of heavy precipitation in the Himalayas.
Abstract
The diurnal cycle of precipitation is highly regional and is typically a product of multiple competing, highly localized effects. The diurnal cycle in regions such as the Amazon and the Maritime Continent are of particular interest, due to the complex coastal and terrain effects. The high spatial and temporal resolution provided by the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) dataset are used in this study to examine the fine-scale features of the diurnal cycle in these regions. Using an 18-yr (2000–18) record of IMERG precipitation observations, diurnal and semidiurnal phase and amplitude are calculated using a fast Fourier transform (FFT) method on half-hourly averaged precipitation at 0.1° × 0.1°. Clear patterns of precipitation phase propagation with distance from shore are shown over both regions, with the diurnal phase and amplitude exhibiting a strong dependence on the distance from the coastline. Semidiurnal cycles are generally weaker than the diurnal cycle except in some isolated locations. Similar analysis is also conducted on the ERA5 reanalysis data in order to evaluate the model’s representation of the precipitation diurnal cycle. The model captures the broadscale patterns of diurnal variability but does not capture all the fine-scale patterns nor the exact timing that is observed by IMERG. Comparisons are also made to a long-record Ku radar dataset created by combining Tropical Rainfall Measuring Mission (TRMM) and GPM observations, thus providing an additional point of comparison for the timing of the ERA5 precipitation peak, since the timing precipitation can be different, even in between observational datasets.
Abstract
The diurnal cycle of precipitation is highly regional and is typically a product of multiple competing, highly localized effects. The diurnal cycle in regions such as the Amazon and the Maritime Continent are of particular interest, due to the complex coastal and terrain effects. The high spatial and temporal resolution provided by the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) dataset are used in this study to examine the fine-scale features of the diurnal cycle in these regions. Using an 18-yr (2000–18) record of IMERG precipitation observations, diurnal and semidiurnal phase and amplitude are calculated using a fast Fourier transform (FFT) method on half-hourly averaged precipitation at 0.1° × 0.1°. Clear patterns of precipitation phase propagation with distance from shore are shown over both regions, with the diurnal phase and amplitude exhibiting a strong dependence on the distance from the coastline. Semidiurnal cycles are generally weaker than the diurnal cycle except in some isolated locations. Similar analysis is also conducted on the ERA5 reanalysis data in order to evaluate the model’s representation of the precipitation diurnal cycle. The model captures the broadscale patterns of diurnal variability but does not capture all the fine-scale patterns nor the exact timing that is observed by IMERG. Comparisons are also made to a long-record Ku radar dataset created by combining Tropical Rainfall Measuring Mission (TRMM) and GPM observations, thus providing an additional point of comparison for the timing of the ERA5 precipitation peak, since the timing precipitation can be different, even in between observational datasets.
Abstract
This study aims to comprehend the propagation of meteorological drought [expressed by the standardized precipitation evapotranspiration index (SPEI)] into hydrological drought [expressed by the standardized runoff index (SRI)] using the combined application of principal component analysis (PCA) and wavelet analysis for a period of 39 years (1980–2018) in the Indus basin, Pakistan. PCA was used to calculate principal components of precipitation, temperature, and streamflow, which were used to systematically propagate drought from one catchment to another, resulting in a catchment-scale drought assessment. The systematic propagation of drought was useful in capturing the effects of local climate variability in the 27 catchments of the Indus basin. Wavelet analyses are used to calculate the variability of SPEI/SRI and propagation (analyzed with the wavelet coherence) from SPEI to SRI. The propagation time from SPEI to SRI was cross correlated. SPEI/SRI time series showed extreme/severe droughts in 16 out of the 39 years, where relatively weak apparent wet and drought events are observed at short periods (1 month) and apparent at longer periods (6 and 12 months). Propagation from SPEI to SRI is catchment specific, with most catchments showing transition in early years (1997–2003). Propagation rate is higher in the upper Indus basin (UIB) and lower Indus basin (LIB) than in the middle Indus basin (MIB), suggesting that climate plays an important role in drought development and propagation. Results also showed a shorter and longer propagation time in the UIB and LIB, respectively. This study has helped us understand the behavior of droughts at catchment scale and will therefore help in the development of drought mitigation plans in Pakistan and similar regions around the world.
Abstract
This study aims to comprehend the propagation of meteorological drought [expressed by the standardized precipitation evapotranspiration index (SPEI)] into hydrological drought [expressed by the standardized runoff index (SRI)] using the combined application of principal component analysis (PCA) and wavelet analysis for a period of 39 years (1980–2018) in the Indus basin, Pakistan. PCA was used to calculate principal components of precipitation, temperature, and streamflow, which were used to systematically propagate drought from one catchment to another, resulting in a catchment-scale drought assessment. The systematic propagation of drought was useful in capturing the effects of local climate variability in the 27 catchments of the Indus basin. Wavelet analyses are used to calculate the variability of SPEI/SRI and propagation (analyzed with the wavelet coherence) from SPEI to SRI. The propagation time from SPEI to SRI was cross correlated. SPEI/SRI time series showed extreme/severe droughts in 16 out of the 39 years, where relatively weak apparent wet and drought events are observed at short periods (1 month) and apparent at longer periods (6 and 12 months). Propagation from SPEI to SRI is catchment specific, with most catchments showing transition in early years (1997–2003). Propagation rate is higher in the upper Indus basin (UIB) and lower Indus basin (LIB) than in the middle Indus basin (MIB), suggesting that climate plays an important role in drought development and propagation. Results also showed a shorter and longer propagation time in the UIB and LIB, respectively. This study has helped us understand the behavior of droughts at catchment scale and will therefore help in the development of drought mitigation plans in Pakistan and similar regions around the world.
Abstract
The Turkana Jet in northern Kenya is shown to modulate the climate of southwest Ethiopia’s Omo River Valley using in situ hydrometeorological data, satellite measurements, and atmospheric reanalyses from decadal to diurnal time scales. Temporal statistics from lowland (2.5°–5°N, 35°–38°E) and highland (6°–9°N, 35°–38°E) areas show that 850-hPa westward airflow over Lake Turkana is stronger in March and October but is weakened when western Indian Ocean sea temperatures become warmer than usual at intervals of 2–7 years. A case study on 24 March 2019 reveals how a stronger Turkana Jet induces warming and drying of the Omo Valley. A second case study on 27 September 2018 reveals Hadley cell subsidence over the southern flank of the Turkana Jet. We demonstrate how nocturnal airflow draining off the mountains joins the channelized jet. Satellite and atmospheric reanalyses exhibit realistic diurnal cycles in the east Omo mountains, but some products have incorrect phase and warm bias. Omo Valley soil moisture and runoff exhibit little trend in historical records and model projections; however, unpredictable multiyear wet and dry spells and a growing demand for water are ongoing concerns.
Abstract
The Turkana Jet in northern Kenya is shown to modulate the climate of southwest Ethiopia’s Omo River Valley using in situ hydrometeorological data, satellite measurements, and atmospheric reanalyses from decadal to diurnal time scales. Temporal statistics from lowland (2.5°–5°N, 35°–38°E) and highland (6°–9°N, 35°–38°E) areas show that 850-hPa westward airflow over Lake Turkana is stronger in March and October but is weakened when western Indian Ocean sea temperatures become warmer than usual at intervals of 2–7 years. A case study on 24 March 2019 reveals how a stronger Turkana Jet induces warming and drying of the Omo Valley. A second case study on 27 September 2018 reveals Hadley cell subsidence over the southern flank of the Turkana Jet. We demonstrate how nocturnal airflow draining off the mountains joins the channelized jet. Satellite and atmospheric reanalyses exhibit realistic diurnal cycles in the east Omo mountains, but some products have incorrect phase and warm bias. Omo Valley soil moisture and runoff exhibit little trend in historical records and model projections; however, unpredictable multiyear wet and dry spells and a growing demand for water are ongoing concerns.
Abstract
The Tigris–Euphrates dryland river basin has experienced a declining trend in terrestrial water storage (TWS) from April 2002 to June 2017. Using satellite observations and a process-based land surface model, we find that climate variations and direct human interventions explain ∼61% (−0.57 mm month−1) and ∼39% (−0.36 mm month−1) of the negative trend, respectively. We further disaggregate the effects of climate variations and find that interannual climate variability contributes substantially (−0.27 mm month−1) to the negative TWS trend, slightly greater than the decadal climate change (−0.25 mm month−1). Interannual climate variability affects TWS mainly through the nonlinear relationship between monthly TWS dynamics and aridity. Slow recovery of TWS during short wetting periods does not compensate for rapid depletion of TWS through transpiration during prolonged drying periods. Despite enhanced water stress, the dryland ecosystems show slightly enhanced resilience to water stress through greater partitioning of evapotranspiration into transpiration and weak surface “greening” effects. However, the dryland ecosystems are vulnerable to drought impacts. The basin shows straining ecosystem functioning after experiencing a severe drought event. In addition, after the onset of the drought, the dryland ecosystem becomes more sensitive to variations in climate conditions.
Significance Statement
The purpose of the research is to better understand climate impacts on terrestrial water storage over dryland regions with declining water storage. In our study, we disaggregate three components of climate impacts, namely, decadal climate change, interannual variability, and intra-annual variability. We then use observational datasets and a process-based model to quantify their individual effects on water storage. We find that interannual variability is the most significant climatic contributor to the declining water storage, mainly caused by prolonged drought periods and corresponding quick drying rates due to plant transpiration. We also find that the dryland ecosystem is sensitive and vulnerable to severe drought events. This study is important because 1) it provides a framework to investigate climate impacts on water fluxes and storages, 2) it highlights the importance of vegetation dynamics on dryland hydrology, and 3) it emphasizes the negative impacts of extreme hydroclimatological events on ecosystem functioning.
Abstract
The Tigris–Euphrates dryland river basin has experienced a declining trend in terrestrial water storage (TWS) from April 2002 to June 2017. Using satellite observations and a process-based land surface model, we find that climate variations and direct human interventions explain ∼61% (−0.57 mm month−1) and ∼39% (−0.36 mm month−1) of the negative trend, respectively. We further disaggregate the effects of climate variations and find that interannual climate variability contributes substantially (−0.27 mm month−1) to the negative TWS trend, slightly greater than the decadal climate change (−0.25 mm month−1). Interannual climate variability affects TWS mainly through the nonlinear relationship between monthly TWS dynamics and aridity. Slow recovery of TWS during short wetting periods does not compensate for rapid depletion of TWS through transpiration during prolonged drying periods. Despite enhanced water stress, the dryland ecosystems show slightly enhanced resilience to water stress through greater partitioning of evapotranspiration into transpiration and weak surface “greening” effects. However, the dryland ecosystems are vulnerable to drought impacts. The basin shows straining ecosystem functioning after experiencing a severe drought event. In addition, after the onset of the drought, the dryland ecosystem becomes more sensitive to variations in climate conditions.
Significance Statement
The purpose of the research is to better understand climate impacts on terrestrial water storage over dryland regions with declining water storage. In our study, we disaggregate three components of climate impacts, namely, decadal climate change, interannual variability, and intra-annual variability. We then use observational datasets and a process-based model to quantify their individual effects on water storage. We find that interannual variability is the most significant climatic contributor to the declining water storage, mainly caused by prolonged drought periods and corresponding quick drying rates due to plant transpiration. We also find that the dryland ecosystem is sensitive and vulnerable to severe drought events. This study is important because 1) it provides a framework to investigate climate impacts on water fluxes and storages, 2) it highlights the importance of vegetation dynamics on dryland hydrology, and 3) it emphasizes the negative impacts of extreme hydroclimatological events on ecosystem functioning.
Abstract
Supertyphoon rainstorms are apposite examples to evaluate the utility of multisource precipitation products in monitoring and forecasting short-duration heavy rainfall and the resulting intense floods. In this study, the record-breaking floods induced by Typhoon Lekima in Jiao River, China, were retrospectively forecasted. The Xinanjiang (XAJ) model was calibrated based on parameter regionalization derived from SOM+k-means clustering. Via XAJ, the performance of the currently prevailing atmosphere reanalysis (CLDASv2 and CMA-CMORP), quantitative precipitation estimation (QPE) (IMERG-ER and PERSIANN-CCS), and quantitative precipitation forecasts (QPFs) (GRAPES_MESO, ECMWF, and GFS) in monitoring and forecasting Lekima rainfall and flood was comprehensively evaluated. A three-component blended ensemble was proposed, by blending QPE nowcasts with the weighted ensemble of QPFs through a transition of the regional GRAPES_MESO, and compared with two conventional two-component blending methods. The results indicated that the parameter regionalization enabled an explicit consideration of the spatial heterogeneity of basin attributes as well as meteorology, resulting in a minimum NSE of 0.81. CLDASv2 and CMA-CMORPH provided superior spatiotemporal accuracy with a structural similarity index up to 0.75 and NSE > 0.9 for the flood simulation. PERSIANN-CCS rainfall and the driven flood were seriously underestimated by 70% and 80%, respectively. The real-time application of QPFs during the Lekima flood provided encouraging results with a lead time of 40 h. The three-component blended ensemble method resulted in more stable and accurate flood forecasts, especially for the flood peak on 9 August, which was improved by 80%. Our results are expected to present support for real-time flood preparation and mitigation with practical significance.
Abstract
Supertyphoon rainstorms are apposite examples to evaluate the utility of multisource precipitation products in monitoring and forecasting short-duration heavy rainfall and the resulting intense floods. In this study, the record-breaking floods induced by Typhoon Lekima in Jiao River, China, were retrospectively forecasted. The Xinanjiang (XAJ) model was calibrated based on parameter regionalization derived from SOM+k-means clustering. Via XAJ, the performance of the currently prevailing atmosphere reanalysis (CLDASv2 and CMA-CMORP), quantitative precipitation estimation (QPE) (IMERG-ER and PERSIANN-CCS), and quantitative precipitation forecasts (QPFs) (GRAPES_MESO, ECMWF, and GFS) in monitoring and forecasting Lekima rainfall and flood was comprehensively evaluated. A three-component blended ensemble was proposed, by blending QPE nowcasts with the weighted ensemble of QPFs through a transition of the regional GRAPES_MESO, and compared with two conventional two-component blending methods. The results indicated that the parameter regionalization enabled an explicit consideration of the spatial heterogeneity of basin attributes as well as meteorology, resulting in a minimum NSE of 0.81. CLDASv2 and CMA-CMORPH provided superior spatiotemporal accuracy with a structural similarity index up to 0.75 and NSE > 0.9 for the flood simulation. PERSIANN-CCS rainfall and the driven flood were seriously underestimated by 70% and 80%, respectively. The real-time application of QPFs during the Lekima flood provided encouraging results with a lead time of 40 h. The three-component blended ensemble method resulted in more stable and accurate flood forecasts, especially for the flood peak on 9 August, which was improved by 80%. Our results are expected to present support for real-time flood preparation and mitigation with practical significance.