Browse

You are looking at 1 - 10 of 118,968 items for

  • Refine by Access: Content accessible to me x
Clear All
Natalia Pilguj, Mateusz Taszarek, John T. Allen, and Kimberly A. Hoogewind

Abstract

In this work, long-term trends in convective parameters are compared between ERA5, MERRA-2, and observed rawinsonde profiles over Europe and the United States including surrounding areas. A 39-yr record (1980–2018) with 2.07 million quality-controlled measurements from 84 stations at 0000 and 1200 UTC is used for the comparison, along with collocated reanalysis profiles. Overall, reanalyses provide signals that are similar to observations, but ERA5 features lower biases. Over Europe, agreement in the trend signal between rawinsondes and the reanalyses is better, particularly with respect to instability (lifted index), low-level moisture (mixing ratio), and 0–3-km lapse rates as compared with mixed trends in the United States. However, consistent signals for all three datasets and both domains are found for robust increases in convective inhibition (CIN), downdraft CAPE (DCAPE), and decreases in mean 0–4-km relative humidity. Despite differing trends between continents, the reanalyses capture well changes in 0–6-km wind shear and 1–3-km mean wind with modest increases in the United States and decreases in Europe. However, these changes are mostly insignificant. All datasets indicate consistent warming of almost the entire tropospheric profile, which over Europe is the fastest near ground whereas across the Great Plains it is generally between 2 and 3 km above ground level, thus contributing to increases in CIN. Results of this work show the importance of intercomparing trends between various datasets, as the limitations associated with one reanalysis or observations may lead to uncertainties and lower our confidence in how parameters are changing over time.

Open access
Elliott M. Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, and Kieran T. Bhatia

Abstract

Recurving tropical cyclones (TCs) can cause extensive damage along the U.S. East Coast and later in their life cycle over Europe as post-tropical cyclones. While the existing literature attempts to understand the drivers of basinwide and regional TC variability, less work has been undertaken looking at recurving TCs. The roles played by the interannual variabilities of TC frequency and the steering flow in governing recurving TC interannual variability are investigated in this study. Using a track-matching algorithm, we identify observed TC tracks from the NHC “best track” hurricane database, version 2 (HURDAT2) in the ERA5 and MERRA2 reanalyses. This allows for detailed analysis of the post-tropical stages of the tracks in the observational TC record, enabling robust identification and separation of TCs that recurve. We show that over 75% of the interannual variance in annual recurving TC frequency can be explained by just two predictors—the frequency of TCs forming in the subtropical Atlantic, and hurricanes (TCs with wind speeds > 33 m s−1) forming in the main development region (MDR). An index describing the seasonal mean meridional steering flow shows a weak, nonsignificant relationship with recurving TC frequency, supported by composite analysis. These results show that the interannual variability in recurving TC frequency is primarily driven by the seasonal TC activity of the MDR and the subtropical Atlantic, with seasonal anomalies in the steering flow playing a much smaller, secondary role. These results help to quantify the extent to which skillful seasonal forecasts of Atlantic hurricane activity benefit regions vulnerable to recurving TCs.

Significance Statement

Recurving tropical cyclones (TCs) can cause extensive damage to the U.S. East Coast, eastern Canada, and Europe. It is, therefore, crucial to understand why some years have a higher frequency of recurving TCs than other years. In this study, we show that the frequency of recurving TCs is very strongly linked to the frequency that hurricanes (TCs with wind speeds > 33 m s−1) form in the main development region, and the frequency that TCs form in the subtropical Atlantic. This result suggests that skillful seasonal prediction of hurricane activity could be used to give enhanced seasonal warning to the regions often impacted by recurving TCs.

Open access
Xian Wu, Yuko M. Okumura, Pedro N. DiNezio, Stephen G. Yeager, and Clara Deser

Abstract

The mean-state bias and the associated forecast errors of the El Niño–Southern Oscillation (ENSO) are investigated in a suite of 2-yr-lead retrospective forecasts conducted with the Community Earth System Model, version 1, for 1954–2015. The equatorial Pacific cold tongue in the forecasts is too strong and extends excessively westward due to a combination of the model’s inherent climatological bias, initialization imbalance, and errors in initial ocean data. The forecasts show a stronger cold tongue bias in the first year than that inherent to the model due to the imbalance between initial subsurface oceanic states and model dynamics. The cold tongue bias affects not only the pattern and amplitude but also the duration of ENSO in the forecasts by altering ocean–atmosphere feedbacks. The predicted sea surface temperature anomalies related to ENSO extend to the far western equatorial Pacific during boreal summer when the cold tongue bias is strong, and the predicted ENSO anomalies are too weak in the central-eastern equatorial Pacific. The forecast errors of pattern and amplitude subsequently lead to errors in ENSO phase transition by affecting the amplitude of the negative thermocline feedback in the equatorial Pacific and tropical interbasin adjustments during the mature phase of ENSO. These ENSO forecast errors further degrade the predictions of wintertime atmospheric teleconnections, land surface air temperature, and rainfall anomalies over the Northern Hemisphere. These mean-state and ENSO forecast biases are more pronounced in forecasts initialized in boreal spring–summer than other seasons due to the seasonal intensification of the Bjerknes feedback.

Open access
Haruki Hirasawa, Paul J. Kushner, Michael Sigmond, John Fyfe, and Clara Deser

Abstract

Sahel summertime precipitation declined from the 1950s to 1970s and recovered from the 1970s to 2000s. Anthropogenic aerosol contributions to this evolution are typically attributed to interhemispheric gradient changes of Atlantic Ocean sea surface temperature (SST). However recent work by Hirasawa et al. indicates a more complex picture, with the response being a combination of “fast” direct atmospheric (DA) processes and “slow” ocean-mediated (OM) processes. Here, we extend this understanding using the Community Atmosphere Model 5 to determine the role of regional ocean-basin perturbations and regional aerosol emission changes in the overall aerosol-driven OM and DA responses, respectively. From the 1950s to 1970s, there was an OM Sahel wetting response due to Pacific Ocean cooling that was offset by drying due to Atlantic cooling. By contrast, from the 1970s to 2000s, Atlantic trends reversed and amplified the Pacific cooling-induced wetting. This wetting was partially offset by drying driven by Indian Ocean cooling. Thus, the OM Sahel precipitation response to aerosol crucially depends on the balance of responses to Atlantic, Pacific, and Indian Ocean SST anomalies. From the 1950s to 1970s, there is DA Sahel drying that was principally due to North American aerosol emissions, with negligible effect from European emissions. DA drying from the 1970s to 2000s was mainly due to African aerosol emissions. Thus, the shifting roles of regional OM and DA effects reveal a complex interplay of direct driving and remote teleconnections in determining the time evolution of Sahel precipitation due to aerosol forcing in the late twentieth century.

Significance Statement

Studies of global climate models consistently indicate that anthropogenic aerosol emissions were a significant contributor to a severe drought that occurred in the Sahel region of Africa in the late twentieth century. The drying influence of aerosol forcing is the combined result of rapid atmospheric responses directly due to the forcing and slower responses due to forced ocean temperature changes. Using a set of simulations targeted at determining the influences from different ocean basins and different emission regions for two periods in the late twentieth century, we find there is a surprising range of mechanisms through which aerosol emissions affect the Sahel. This results in a complex interplay of at times competing and at times complementary regional influences.

Open access
Jiabao Wang, Hyemi Kim, and Michael J. DeFlorio

Abstract

Future changes in boreal winter MJO teleconnections over the Pacific–North America (PNA) region are examined in 15 Coupled Model Intercomparison Project phase 6 models (CMIP6s) under SSP585 (i.e., Shared Socioeconomic Pathway 5 following approximately the representative concentration pathway RCP8.5) scenarios. The most robust and significant change is an eastward extension (∼4° eastward for the multimodel mean) of MJO teleconnections in the North Pacific. Other projected changes in MJO teleconnections include a northward extension, more consistent patterns between different MJO events, stronger amplitude, and shorter persistence; however, these changes are more uncertain and less significant with a large intra- and intermodel spread. Mechanisms of the eastward teleconnection extension are investigated by comparing impacts of the future MJO and basic state changes on the anomalous Rossby wave source (RWS) and teleconnection pathways with a linear baroclinic model (LBM). The eastward extended jet in the future plays a more important role than the eastward-extended MJO in influencing the east–west position of MJO teleconnections. It leads to more eastward teleconnection propagation along the jet due to the eastward extension of turning latitudes before they propagate into North America. MJO teleconnections thus are positioned 2.9° more eastward in the North Pacific in the LBM. The eastward extended MJO, on the other hand, helps to generate a more eastward-extended RWS. However, negligible change is found in the east–west position of MJO teleconnections (only 0.3° more eastward in the LBM) excited from this RWS without the jet impacts. The above results suggest the dominant role of the jet change in influencing future MJO teleconnection position by altering their propagation pathways.

Open access
Pranav Puthan, Geno Pawlak, and Sutanu Sarkar

Abstract

Large-eddy simulations (LES) are employed to investigate the role of time-varying currents on the form drag and vortex dynamics of submerged 3D topography in a stratified rotating environment. The current is of the form Uc + Utsin(2πftt), where Uc is the mean, Ut is the tidal component, and ft is its frequency. A conical obstacle is considered in the regime of low Froude number. When tides are absent, eddies are shed at the natural shedding frequency fs , c. The relative frequency f*=fs,c/ft is varied in a parametric study, which reveals states of high time-averaged form drag coefficient. There is a twofold amplification of the form drag coefficient relative to the no-tide (Ut = 0) case when f* lies between 0.5 and 1. The spatial organization of the near-wake vortices in the high drag states is different from a Kármán vortex street. For instance, the vortex shedding from the obstacle is symmetric when f*=5/12 and strongly asymmetric when f*=5/6. The increase in form drag with increasing f* stems from bottom intensification of the pressure in the obstacle lee which we link to changes in flow separation and near-wake vortices.

Open access
Free access
Ying-Wen Chen, Masaki Satoh, Chihiro Kodama, Akira T. Noda, and Yohei Yamada

Abstract

This study examines projections of high clouds related to sea surface temperature (SST) change using 14-km simulation output from NICAM, a global cloud system–resolving model. This study focuses on the vertical and horizontal structure of high cloud response to the SST pattern and how these cloud responses are linked to ice hydrometeors, such as cloud ice, snow, and graupel, which are not resolved by conventional general circulation models (GCMs). Under the present climate, the vertical and horizontal structure of the simulated increase in tropical high cloud amount for positive tropical mean HadISST SST anomalies has similar behavior to that of the GCM-Oriented CALIPSO Cloud Product (GOCCP) cloud fraction for HadISST SST. We further show that cloud ice is the main contributor to the simulated high cloud amount. Under a warming climate, the composite vertical and horizontal structure of the tropical high cloud response to the SST shows similar behavior to that under the present climate, but the amplitude of the variation is greater by a factor of 1.5 and the variation is more widespread. This amplification contributes to the high cloud increase under the warming climate, which is directly linked to the wider spatial extent of cloud ice in the eastern Pacific region. This study specifically reveals the similarity of the patterns of the responses of the high cloud fraction and cloud ice to global warming, indicating that an appropriate treatment of the complete spectrum of ice hydrometeors in global climate models is key to simulating high clouds and their response to global warming.

Open access
Zili Shen, Anmin Duan, Dongliang Li, and Jinxiao Li

Abstract

Arctic sea ice has undergone rapid loss in all months of the year in recent decades, especially in September. The September sea ice extent (SSIE) in the multimodel ensemble mean of climate models shows a large divergence from observations since the 2000s, which indicates the potential influence of internal variability on SSIE decadal variations. Reasons previously identified for the accelerated decrease in SSIE are largely related to the tendency toward a barotropic geopotential height rise in summer over the Arctic. We used a 40-member ensemble of simulation by the Community Earth System Model version 1 (CESM1) and a 100-member ensemble simulation by the Max Planck Institute Earth System Model (MPI-ESM) to reveal that the internal variability of the local atmosphere circulation change can contribute 12%–17% to the uncertainties in the projected SSIE changes during 2016–45 in both CESM-LE and MPI-ESM. The tropical Pacific Ocean may act as a remote driver for the sea ice melting but the coupling between them is more intense on decadal time scales than that on year-to-year scales. Our quantitative estimation of the contribution of the internal atmospheric circulation to SSIE during the next three decades may be underestimated due to models’ inability to capture the observed Rossby wave train originating from the tropical Pacific Ocean propagating into the Arctic. Further efforts toward investigating causes of the model limitations and quantifying the contribution of local and remote component to Arctic sea ice on different time scales may help to improve the future sea ice prediction.

Open access
Alex D. Crawford, Jennifer V. Lukovich, Michelle R. McCrystall, Julienne C. Stroeve, and David G. Barber

Abstract

The ideal environment for extratropical cyclone development includes strong vertical shear of horizontal wind and low static stability in the atmosphere. Arctic sea ice loss enhances the upward flux of energy to the lower atmosphere, reducing static stability. This suggests that Arctic sea ice loss may facilitate more intense storms over the Arctic Ocean. However, prior research into this possibility has yielded mixed results with uncertain cause and effect. This work has been limited either in scope (focusing on a few case studies) or resolution (focusing on seasonal averages). In this study, we extend this body of research by comparing the intensification rate and maximum intensity of individual cyclones to local sea ice anomalies. We find robust evidence that reduced sea ice in winter (December–March) strengthens Arctic cyclones by enhancing the surface turbulent heat fluxes and lessening static stability while also strengthening vertical shear of horizontal wind. We find weaker evidence for this connection in spring (April–June). In both seasons, lower sea ice concentration also enhances cyclone-associated precipitation. Although reduced sea ice also weakens static stability in September/October (when sea ice loss has been especially acute), this does not translate to stronger storms because of coincident weakening of wind shear. Sea ice anomalies also have little or no connection to cyclone-associated precipitation in these months. Therefore, future sea ice reductions (e.g., related to delayed autumn freeze-up) will likely enhance Arctic cyclone intensification in winter and spring, but this relationship is sensitive to simultaneous connections between sea ice and wind shear.

Significance Statement

Sea ice is a barrier between the ocean and atmosphere, limiting the exchange of energy between them. As the amount of sea ice in the Arctic Ocean declines, the ocean can transfer more heat to the atmosphere above in fall and winter. It is theorized that this extra energy may help intensify storms that pass through the Arctic. We examine individual storms over the Arctic Ocean and what sea ice conditions they experience as they develop. We find that storms intensify more when sea ice is lower than normal in the winter season only. This relationship may contribute to stronger Arctic winter storms in the future, including heavier precipitation and stronger winds (which can enhance wave heights and coastal erosion).

Open access