Browse

You are looking at 1 - 10 of 67,024 items for :

  • Refine by Access: Content accessible to me x
Clear All
Natalia Pilguj, Mateusz Taszarek, John T. Allen, and Kimberly A. Hoogewind

Abstract

In this work, long-term trends in convective parameters are compared between ERA5, MERRA-2, and observed rawinsonde profiles over Europe and the United States including surrounding areas. A 39-yr record (1980–2018) with 2.07 million quality-controlled measurements from 84 stations at 0000 and 1200 UTC is used for the comparison, along with collocated reanalysis profiles. Overall, reanalyses provide signals that are similar to observations, but ERA5 features lower biases. Over Europe, agreement in the trend signal between rawinsondes and the reanalyses is better, particularly with respect to instability (lifted index), low-level moisture (mixing ratio), and 0–3-km lapse rates as compared with mixed trends in the United States. However, consistent signals for all three datasets and both domains are found for robust increases in convective inhibition (CIN), downdraft CAPE (DCAPE), and decreases in mean 0–4-km relative humidity. Despite differing trends between continents, the reanalyses capture well changes in 0–6-km wind shear and 1–3-km mean wind with modest increases in the United States and decreases in Europe. However, these changes are mostly insignificant. All datasets indicate consistent warming of almost the entire tropospheric profile, which over Europe is the fastest near ground whereas across the Great Plains it is generally between 2 and 3 km above ground level, thus contributing to increases in CIN. Results of this work show the importance of intercomparing trends between various datasets, as the limitations associated with one reanalysis or observations may lead to uncertainties and lower our confidence in how parameters are changing over time.

Open access
Veeshan Narinesingh, James F. Booth, and Yi Ming

Abstract

This study examines the climatology and dynamics of atmospheric blocking, and the general circulation features that influence blocks in GFDL’s atmosphere-only (AM4) and coupled atmosphere–ocean (CM4) comprehensive models. We compare AM4 and CM4 with reanalysis, focusing on winter in the Northern Hemisphere. Both models generate the correct blocking climatology and planetary-scale signatures of the stationary wave. However, at regional scales some biases exist. In the eastern Pacific and over western North America, both models generate excessive blocking frequency and too strong of a stationary wave. In the Atlantic, the models generate too little blocking and a weakened stationary wave. A block-centered compositing analysis of block-onset dynamics reveals that the models 1) produce realistic patterns of high-frequency (1–6-day) eddy forcing and 2) capture the notable differences in the 500-hPa geopotential height field between Pacific and Atlantic blocking. However, the models fail to reproduce stronger wave activity flux convergence in the Atlantic compared to the Pacific. Overall, biases in the blocking climatology in terms of location, frequency, duration, and area are quite similar between AM4 and CM4 despite the models having large differences in sea surface temperatures and climatological zonal circulation. This could suggest that other factors could be more dominant in generating blocking biases for these GCMs.

Significance Statement

Atmospheric blocks are persistent high pressure systems that can lead to hazardous weather. Historically, climate models have had trouble capturing blocks, but recent changes in the models might lead to improvements. As such, the work herein investigates the spatial distribution, prevalence, duration, size, and dynamics of wintertime blocking in recent NOAA climate models. Overall, these models capture the long-term-average spatial pattern of blocking, and properly reproduce key dynamical features. However, the models produce too much blocking in the western United States, and too little over the northern Atlantic Ocean and Europe. These blocking biases are consistent with atmospheric stationary waves biases, but not jet stream bias. This downplays the role of jet biases in the models being responsible for blocking biases.

Open access
L. Ruby Leung, William R. Boos, Jennifer L. Catto, Charlotte A. DeMott, Gill M. Martin, J. David Neelin, Travis A. O’Brien, Shaocheng Xie, Zhe Feng, Nicholas P. Klingaman, Yi-Hung Kuo, Robert W. Lee, Cristian Martinez-Villalobos, S. Vishnu, Matthew D. K. Priestley, Cheng Tao, and Yang Zhou

Abstract

Precipitation sustains life and supports human activities, making its prediction one of the most societally relevant challenges in weather and climate modeling. Limitations in modeling precipitation underscore the need for diagnostics and metrics to evaluate precipitation in simulations and predictions. While routine use of basic metrics is important for documenting model skill, more sophisticated diagnostics and metrics aimed at connecting model biases to their sources and revealing precipitation characteristics relevant to how model precipitation is used are critical for improving models and their uses. This paper illustrates examples of exploratory diagnostics and metrics including 1) spatiotemporal characteristics metrics such as diurnal variability, probability of extremes, duration of dry spells, spectral characteristics, and spatiotemporal coherence of precipitation; 2) process-oriented metrics based on the rainfall–moisture coupling and temperature–water vapor environments of precipitation; and 3) phenomena-based metrics focusing on precipitation associated with weather phenomena including low pressure systems, mesoscale convective systems, frontal systems, and atmospheric rivers. Together, these diagnostics and metrics delineate the multifaceted and multiscale nature of precipitation, its relations with the environments, and its generation mechanisms. The metrics are applied to historical simulations from phases 5 and 6 of the Coupled Model Intercomparison Project. Models exhibit diverse skill as measured by the suite of metrics, with very few models consistently ranked as top or bottom performers compared to other models in multiple metrics. Analysis of model skill across metrics and models suggests possible relationships among subsets of metrics, motivating the need for more systematic analysis to understand model biases for informing model development.

Open access
Elliott M. Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, and Kieran T. Bhatia

Abstract

Recurving tropical cyclones (TCs) can cause extensive damage along the U.S. East Coast and later in their life cycle over Europe as post-tropical cyclones. While the existing literature attempts to understand the drivers of basinwide and regional TC variability, less work has been undertaken looking at recurving TCs. The roles played by the interannual variabilities of TC frequency and the steering flow in governing recurving TC interannual variability are investigated in this study. Using a track-matching algorithm, we identify observed TC tracks from the NHC “best track” hurricane database, version 2 (HURDAT2) in the ERA5 and MERRA2 reanalyses. This allows for detailed analysis of the post-tropical stages of the tracks in the observational TC record, enabling robust identification and separation of TCs that recurve. We show that over 75% of the interannual variance in annual recurving TC frequency can be explained by just two predictors—the frequency of TCs forming in the subtropical Atlantic, and hurricanes (TCs with wind speeds > 33 m s−1) forming in the main development region (MDR). An index describing the seasonal mean meridional steering flow shows a weak, nonsignificant relationship with recurving TC frequency, supported by composite analysis. These results show that the interannual variability in recurving TC frequency is primarily driven by the seasonal TC activity of the MDR and the subtropical Atlantic, with seasonal anomalies in the steering flow playing a much smaller, secondary role. These results help to quantify the extent to which skillful seasonal forecasts of Atlantic hurricane activity benefit regions vulnerable to recurving TCs.

Significance Statement

Recurving tropical cyclones (TCs) can cause extensive damage to the U.S. East Coast, eastern Canada, and Europe. It is, therefore, crucial to understand why some years have a higher frequency of recurving TCs than other years. In this study, we show that the frequency of recurving TCs is very strongly linked to the frequency that hurricanes (TCs with wind speeds > 33 m s−1) form in the main development region, and the frequency that TCs form in the subtropical Atlantic. This result suggests that skillful seasonal prediction of hurricane activity could be used to give enhanced seasonal warning to the regions often impacted by recurving TCs.

Open access
Jan Jaap Meijer, Helen E. Phillips, Nathaniel L. Bindoff, Stephen R. Rintoul, and Annie Foppert

Abstract

Meanders formed where the Antarctic Circumpolar Current (ACC) interacts with topography have been identified as dynamical hot spots, characterized by enhanced eddy energy, momentum transfer, and cross-front exchange. However, few studies have used observations to diagnose the dynamics of ACC standing meanders. We use a synoptic hydrographic survey and satellite altimetry to explore the momentum and vorticity balance of a Subantarctic Front standing meander, downstream of the Southeast Indian Ridge. Along-stream anomalies of temperature in the upper ocean (150–600 m) show along-stream cooling entering the surface trough and along-stream warming entering the surface crest, while warming is observed from trough to crest in the deeper ocean (600–1500 m). Advection of relative vorticity is balanced by vortex stretching, as found in model studies of meandering currents. Meander curvature is sufficiently large that the flow is in gradient wind balance, resulting in ageostrophic horizontal divergence. This drives downwelling of cooler water along isopycnals entering the surface trough and upwelling of warmer water entering the surface crest, consistent with the observed evolution of temperature anomalies in the upper ocean. Progressive along-stream warming observed between 600 and 1500 m likely reflects cyclogenesis in the deep ocean. Vortex stretching couples the upper and lower water column, producing a low pressure at depth between surface trough and crest and cyclonic flow that carries cold water equatorward in the surface trough and warm water poleward in the surface crest (poleward heat flux). The results highlight gradient–wind balance and cyclogenesis as central to dynamics of standing meanders and their critical role in the ACC momentum and vorticity balance.

Significance Statement

The Antarctic Circumpolar Current (ACC) in the Southern Ocean is a nearly zonal current that encircles Antarctica. It acts as a barrier between warmer water equatorward and colder water poleward. In a few regions where the current encounters strong topographic changes, the current meanders and opens a pathway for heat to travel across the ACC toward Antarctica. We surveyed a meander in the ACC and examined the along-stream change of temperature. In the upper ocean, temperature changes are caused by a vertical circulation, bringing cool water down when entering the surface trough (the part of the meander closest to the equator), and warm water up when exiting the surface trough and entering the surface crest. At depth, cold water is transported equatorward in the surface trough and warm water poleward in the surface crest, leading to a net transport of heat poleward. This study highlights the importance of the secondary circulation within a meander for generating cross-ACC flows and moving heat toward Antarctica.

Open access
Xian Wu, Yuko M. Okumura, Pedro N. DiNezio, Stephen G. Yeager, and Clara Deser

Abstract

The mean-state bias and the associated forecast errors of the El Niño–Southern Oscillation (ENSO) are investigated in a suite of 2-yr-lead retrospective forecasts conducted with the Community Earth System Model, version 1, for 1954–2015. The equatorial Pacific cold tongue in the forecasts is too strong and extends excessively westward due to a combination of the model’s inherent climatological bias, initialization imbalance, and errors in initial ocean data. The forecasts show a stronger cold tongue bias in the first year than that inherent to the model due to the imbalance between initial subsurface oceanic states and model dynamics. The cold tongue bias affects not only the pattern and amplitude but also the duration of ENSO in the forecasts by altering ocean–atmosphere feedbacks. The predicted sea surface temperature anomalies related to ENSO extend to the far western equatorial Pacific during boreal summer when the cold tongue bias is strong, and the predicted ENSO anomalies are too weak in the central-eastern equatorial Pacific. The forecast errors of pattern and amplitude subsequently lead to errors in ENSO phase transition by affecting the amplitude of the negative thermocline feedback in the equatorial Pacific and tropical interbasin adjustments during the mature phase of ENSO. These ENSO forecast errors further degrade the predictions of wintertime atmospheric teleconnections, land surface air temperature, and rainfall anomalies over the Northern Hemisphere. These mean-state and ENSO forecast biases are more pronounced in forecasts initialized in boreal spring–summer than other seasons due to the seasonal intensification of the Bjerknes feedback.

Open access
Haruki Hirasawa, Paul J. Kushner, Michael Sigmond, John Fyfe, and Clara Deser

Abstract

Sahel summertime precipitation declined from the 1950s to 1970s and recovered from the 1970s to 2000s. Anthropogenic aerosol contributions to this evolution are typically attributed to interhemispheric gradient changes of Atlantic Ocean sea surface temperature (SST). However recent work by Hirasawa et al. indicates a more complex picture, with the response being a combination of “fast” direct atmospheric (DA) processes and “slow” ocean-mediated (OM) processes. Here, we extend this understanding using the Community Atmosphere Model 5 to determine the role of regional ocean-basin perturbations and regional aerosol emission changes in the overall aerosol-driven OM and DA responses, respectively. From the 1950s to 1970s, there was an OM Sahel wetting response due to Pacific Ocean cooling that was offset by drying due to Atlantic cooling. By contrast, from the 1970s to 2000s, Atlantic trends reversed and amplified the Pacific cooling-induced wetting. This wetting was partially offset by drying driven by Indian Ocean cooling. Thus, the OM Sahel precipitation response to aerosol crucially depends on the balance of responses to Atlantic, Pacific, and Indian Ocean SST anomalies. From the 1950s to 1970s, there is DA Sahel drying that was principally due to North American aerosol emissions, with negligible effect from European emissions. DA drying from the 1970s to 2000s was mainly due to African aerosol emissions. Thus, the shifting roles of regional OM and DA effects reveal a complex interplay of direct driving and remote teleconnections in determining the time evolution of Sahel precipitation due to aerosol forcing in the late twentieth century.

Significance Statement

Studies of global climate models consistently indicate that anthropogenic aerosol emissions were a significant contributor to a severe drought that occurred in the Sahel region of Africa in the late twentieth century. The drying influence of aerosol forcing is the combined result of rapid atmospheric responses directly due to the forcing and slower responses due to forced ocean temperature changes. Using a set of simulations targeted at determining the influences from different ocean basins and different emission regions for two periods in the late twentieth century, we find there is a surprising range of mechanisms through which aerosol emissions affect the Sahel. This results in a complex interplay of at times competing and at times complementary regional influences.

Open access
Jiabao Wang, Hyemi Kim, and Michael J. DeFlorio

Abstract

Future changes in boreal winter MJO teleconnections over the Pacific–North America (PNA) region are examined in 15 Coupled Model Intercomparison Project phase 6 models (CMIP6s) under SSP585 (i.e., Shared Socioeconomic Pathway 5 following approximately the representative concentration pathway RCP8.5) scenarios. The most robust and significant change is an eastward extension (∼4° eastward for the multimodel mean) of MJO teleconnections in the North Pacific. Other projected changes in MJO teleconnections include a northward extension, more consistent patterns between different MJO events, stronger amplitude, and shorter persistence; however, these changes are more uncertain and less significant with a large intra- and intermodel spread. Mechanisms of the eastward teleconnection extension are investigated by comparing impacts of the future MJO and basic state changes on the anomalous Rossby wave source (RWS) and teleconnection pathways with a linear baroclinic model (LBM). The eastward extended jet in the future plays a more important role than the eastward-extended MJO in influencing the east–west position of MJO teleconnections. It leads to more eastward teleconnection propagation along the jet due to the eastward extension of turning latitudes before they propagate into North America. MJO teleconnections thus are positioned 2.9° more eastward in the North Pacific in the LBM. The eastward extended MJO, on the other hand, helps to generate a more eastward-extended RWS. However, negligible change is found in the east–west position of MJO teleconnections (only 0.3° more eastward in the LBM) excited from this RWS without the jet impacts. The above results suggest the dominant role of the jet change in influencing future MJO teleconnection position by altering their propagation pathways.

Open access
Pranav Puthan, Geno Pawlak, and Sutanu Sarkar

Abstract

Large-eddy simulations (LES) are employed to investigate the role of time-varying currents on the form drag and vortex dynamics of submerged 3D topography in a stratified rotating environment. The current is of the form Uc + Utsin(2πftt), where Uc is the mean, Ut is the tidal component, and ft is its frequency. A conical obstacle is considered in the regime of low Froude number. When tides are absent, eddies are shed at the natural shedding frequency fs , c. The relative frequency f*=fs,c/ft is varied in a parametric study, which reveals states of high time-averaged form drag coefficient. There is a twofold amplification of the form drag coefficient relative to the no-tide (Ut = 0) case when f* lies between 0.5 and 1. The spatial organization of the near-wake vortices in the high drag states is different from a Kármán vortex street. For instance, the vortex shedding from the obstacle is symmetric when f*=5/12 and strongly asymmetric when f*=5/6. The increase in form drag with increasing f* stems from bottom intensification of the pressure in the obstacle lee which we link to changes in flow separation and near-wake vortices.

Open access
Ying-Wen Chen, Masaki Satoh, Chihiro Kodama, Akira T. Noda, and Yohei Yamada

Abstract

This study examines projections of high clouds related to sea surface temperature (SST) change using 14-km simulation output from NICAM, a global cloud system–resolving model. This study focuses on the vertical and horizontal structure of high cloud response to the SST pattern and how these cloud responses are linked to ice hydrometeors, such as cloud ice, snow, and graupel, which are not resolved by conventional general circulation models (GCMs). Under the present climate, the vertical and horizontal structure of the simulated increase in tropical high cloud amount for positive tropical mean HadISST SST anomalies has similar behavior to that of the GCM-Oriented CALIPSO Cloud Product (GOCCP) cloud fraction for HadISST SST. We further show that cloud ice is the main contributor to the simulated high cloud amount. Under a warming climate, the composite vertical and horizontal structure of the tropical high cloud response to the SST shows similar behavior to that under the present climate, but the amplitude of the variation is greater by a factor of 1.5 and the variation is more widespread. This amplification contributes to the high cloud increase under the warming climate, which is directly linked to the wider spatial extent of cloud ice in the eastern Pacific region. This study specifically reveals the similarity of the patterns of the responses of the high cloud fraction and cloud ice to global warming, indicating that an appropriate treatment of the complete spectrum of ice hydrometeors in global climate models is key to simulating high clouds and their response to global warming.

Open access