Browse
Abstract
Stratocumulus occur in closed- or open-cell states, which tend to be associated with high or low cloud cover and the absence or presence of precipitation, respectively. Thus, the transition between these states has substantial implications for the role of this cloud type in Earth’s radiation budget. In this study, we analyze transitions between these states using an ensemble of 127 large-eddy simulations, covering a wide range of conditions. Our analysis is focused on the behavior of these clouds in a cloud fraction (fc ) scene albedo (A) phase space, which has been shown in previous studies to be a useful framework for interpreting system behavior. For the transition from closed to open cells, we find that precipitation creates narrower clouds and scavenges cloud droplets for all fc . However, precipitation decreases the cloud depth for fc > 0.8 only, causing a rapid decrease in A. For fc < 0.8, the cloud depth actually increases due to mesoscale organization of the cloud field. As the cloud deepening balances the effects of cloud droplet scavenging in terms of influence on A, changes in A are determined by the decreasing fc only, causing a linear decrease in A for fc < 0.8. For the transition from open to closed cells, we find that longwave radiative cooling drives the cloud development, with cloud widening dominating for fc < 0.5. For fc > 0.5, clouds begin to deepen gradually due to the decreasing efficiency of lateral expansion. The smooth switch between cloud widening and deepening leads to a more gentle change in A compared to the transitions under precipitating conditions.
Significance Statement
By reflecting a substantial fraction of solar shortwave radiation back to space, shallow clouds constitute a major cooling agent in Earth’s radiation budget. To constrain this effect, a profound understanding of cloud cover and cloud albedo is necessary. In this study, we analyze the processes that drive the variability in these cloud properties in stratocumulus clouds, a very common cloud type covering approximately 20% of the globe. For these clouds, we show that changes from low to high or high to low cloud cover are different due to the underlying cloud micro- and macrophysics, elucidating this crucial aspect of aerosol–cloud–climate interactions.
Abstract
Stratocumulus occur in closed- or open-cell states, which tend to be associated with high or low cloud cover and the absence or presence of precipitation, respectively. Thus, the transition between these states has substantial implications for the role of this cloud type in Earth’s radiation budget. In this study, we analyze transitions between these states using an ensemble of 127 large-eddy simulations, covering a wide range of conditions. Our analysis is focused on the behavior of these clouds in a cloud fraction (fc ) scene albedo (A) phase space, which has been shown in previous studies to be a useful framework for interpreting system behavior. For the transition from closed to open cells, we find that precipitation creates narrower clouds and scavenges cloud droplets for all fc . However, precipitation decreases the cloud depth for fc > 0.8 only, causing a rapid decrease in A. For fc < 0.8, the cloud depth actually increases due to mesoscale organization of the cloud field. As the cloud deepening balances the effects of cloud droplet scavenging in terms of influence on A, changes in A are determined by the decreasing fc only, causing a linear decrease in A for fc < 0.8. For the transition from open to closed cells, we find that longwave radiative cooling drives the cloud development, with cloud widening dominating for fc < 0.5. For fc > 0.5, clouds begin to deepen gradually due to the decreasing efficiency of lateral expansion. The smooth switch between cloud widening and deepening leads to a more gentle change in A compared to the transitions under precipitating conditions.
Significance Statement
By reflecting a substantial fraction of solar shortwave radiation back to space, shallow clouds constitute a major cooling agent in Earth’s radiation budget. To constrain this effect, a profound understanding of cloud cover and cloud albedo is necessary. In this study, we analyze the processes that drive the variability in these cloud properties in stratocumulus clouds, a very common cloud type covering approximately 20% of the globe. For these clouds, we show that changes from low to high or high to low cloud cover are different due to the underlying cloud micro- and macrophysics, elucidating this crucial aspect of aerosol–cloud–climate interactions.
Abstract
This paper explores whether particles within uniformly spaced generating cells falling at terminal velocity within observed 2D wind fields and idealized deformation flow beneath cloud top can be reorganized consistent with the presence of single and multibanded structures present on WSR-88D radars. In the first experiment, two-dimensional wind fields, calculated along cross sections normal to the long axis of snowbands observed during three northeast U.S. winter storms, were taken from the initialization of the High-Resolution Rapid Refresh model. This experiment demonstrated that the greater the residence time of the particles in each of the three storms, the greater particle reorganization occurred. For experiments with longer residence times, increases in particle concentrations were nearly or directly collocated with reflectivity bands. For experiments with shorter residence times, particle reorganization still conformed to the band features but with less concentration enhancement. This experiment demonstrates that the combination of long particle residence time and net convergent cross-sectional flow through the cloud depth is sufficient to reorganize particles into locations consistent with precipitation bands. Increased concentrations of ice particles can then contribute, along with any dynamic forcing, to the low-level reflectivity bands seen on WSR-88D radars. In a second experiment, the impact of flow deformation on the reorganization of falling ice particles was investigated using an idealized kinematic model with stretching deformation flow of different depths and magnitudes. These experiments showed that deformation flow provides for little particle reorganization given typical deformation layer depths and magnitudes within the comma head of such storms.
Significance Statement
Past research with vertically pointing and scanning radars presents two different perspectives regarding snowfall organization in winter storms. Vertically pointing radars often observe cloud-top generating cells with precipitation fallstreaks descending into a broad stratiform echo at lower altitudes. In contrast, scanning radars often observe snowfall organized in quasi-linear bands. This work attempts to provide a connection between these two perspectives by examining how two-dimensional convergent and deformation flow occurring in winter storms can contribute to the reorganization of snowfall between cloud top and the ground.
Abstract
This paper explores whether particles within uniformly spaced generating cells falling at terminal velocity within observed 2D wind fields and idealized deformation flow beneath cloud top can be reorganized consistent with the presence of single and multibanded structures present on WSR-88D radars. In the first experiment, two-dimensional wind fields, calculated along cross sections normal to the long axis of snowbands observed during three northeast U.S. winter storms, were taken from the initialization of the High-Resolution Rapid Refresh model. This experiment demonstrated that the greater the residence time of the particles in each of the three storms, the greater particle reorganization occurred. For experiments with longer residence times, increases in particle concentrations were nearly or directly collocated with reflectivity bands. For experiments with shorter residence times, particle reorganization still conformed to the band features but with less concentration enhancement. This experiment demonstrates that the combination of long particle residence time and net convergent cross-sectional flow through the cloud depth is sufficient to reorganize particles into locations consistent with precipitation bands. Increased concentrations of ice particles can then contribute, along with any dynamic forcing, to the low-level reflectivity bands seen on WSR-88D radars. In a second experiment, the impact of flow deformation on the reorganization of falling ice particles was investigated using an idealized kinematic model with stretching deformation flow of different depths and magnitudes. These experiments showed that deformation flow provides for little particle reorganization given typical deformation layer depths and magnitudes within the comma head of such storms.
Significance Statement
Past research with vertically pointing and scanning radars presents two different perspectives regarding snowfall organization in winter storms. Vertically pointing radars often observe cloud-top generating cells with precipitation fallstreaks descending into a broad stratiform echo at lower altitudes. In contrast, scanning radars often observe snowfall organized in quasi-linear bands. This work attempts to provide a connection between these two perspectives by examining how two-dimensional convergent and deformation flow occurring in winter storms can contribute to the reorganization of snowfall between cloud top and the ground.
Abstract
In the absence of scattering, thermal contrast in the atmosphere is the key to infrared remote sensing. Without the thermal contrast, the amount of absorption will be identical to the amount of emission, making the atmospheric vertical structure undetectable using remote sensing techniques. Here we show that, even in such an isothermal atmosphere, the scattering of clouds can cause a distinguishable change in upwelling radiance at the top of the atmosphere. A two-stream analytical solution, as well as a budget analysis based on Monte Carlo simulations, are used to offer a physical explanation of such influence on an idealized isothermal atmosphere by cloud scattering: it increases the chance of photons being absorbed by the atmosphere before they can reach the boundaries (both top and bottom), which leads to a reduction of TOA upwelling radiance. Actual sounding profiles and cloud properties inferred from satellite observations within 6-h time frames are fed into a more realistic and comprehensive radiative transfer model to show such cloud scattering effect, under nearly isothermal circumstances in the lower troposphere, can lead to ∼1–1.5-K decrease in brightness temperature for the nadir-view MODIS 8.5-μm channel. The study suggests that cloud scattering can provide signals useful for remote sensing applications even for such an isothermal environment.
Abstract
In the absence of scattering, thermal contrast in the atmosphere is the key to infrared remote sensing. Without the thermal contrast, the amount of absorption will be identical to the amount of emission, making the atmospheric vertical structure undetectable using remote sensing techniques. Here we show that, even in such an isothermal atmosphere, the scattering of clouds can cause a distinguishable change in upwelling radiance at the top of the atmosphere. A two-stream analytical solution, as well as a budget analysis based on Monte Carlo simulations, are used to offer a physical explanation of such influence on an idealized isothermal atmosphere by cloud scattering: it increases the chance of photons being absorbed by the atmosphere before they can reach the boundaries (both top and bottom), which leads to a reduction of TOA upwelling radiance. Actual sounding profiles and cloud properties inferred from satellite observations within 6-h time frames are fed into a more realistic and comprehensive radiative transfer model to show such cloud scattering effect, under nearly isothermal circumstances in the lower troposphere, can lead to ∼1–1.5-K decrease in brightness temperature for the nadir-view MODIS 8.5-μm channel. The study suggests that cloud scattering can provide signals useful for remote sensing applications even for such an isothermal environment.
Abstract
Large values of convective available potential energy (CAPE) are an important ingredient for many severe convective storms, yet there has been comparatively little research on how, physically, such large values arise or why they take on the observed values and climatology. Here we build on recently published observational and theoretical work to construct a simple, one-dimensional coupled soil–atmosphere model of preconvective boundary layer growth, driven by a single diurnal cycle of prescribed net surface radiation. Based on this model and previously published research, we suggest that high CAPE (>∼1000 J kg−1) results when air masses that have been significantly modified by passage over dry, lightly vegetated soils are advected over moist and/or moderately vegetated soils and then exposed to surface solar heating. Several diurnal cycles may be needed to raise the moist static energy of the boundary layer to levels consistent with high CAPE. The production of CAPE and erosion of convective inhibition (CIN) are strongly affected by the potential temperature of the desert-modified air mass, the level of near-surface soil moisture (and root-zone soil moisture if significant vegetation is present), the type of soil, and the characteristics of the vegetation. Consequently, CAPE production and severe convective weather may be significantly affected by regional-scale land-use changes and by climate change.
Significance Statement
The energy available for severe convective storms depends strongly on the properties of the underlying soil and vegetation and the temperature of air masses formed over dry terrain upstream. This implies that the severity of convective storms can be strongly affected by changes in land use and by climate change.
Abstract
Large values of convective available potential energy (CAPE) are an important ingredient for many severe convective storms, yet there has been comparatively little research on how, physically, such large values arise or why they take on the observed values and climatology. Here we build on recently published observational and theoretical work to construct a simple, one-dimensional coupled soil–atmosphere model of preconvective boundary layer growth, driven by a single diurnal cycle of prescribed net surface radiation. Based on this model and previously published research, we suggest that high CAPE (>∼1000 J kg−1) results when air masses that have been significantly modified by passage over dry, lightly vegetated soils are advected over moist and/or moderately vegetated soils and then exposed to surface solar heating. Several diurnal cycles may be needed to raise the moist static energy of the boundary layer to levels consistent with high CAPE. The production of CAPE and erosion of convective inhibition (CIN) are strongly affected by the potential temperature of the desert-modified air mass, the level of near-surface soil moisture (and root-zone soil moisture if significant vegetation is present), the type of soil, and the characteristics of the vegetation. Consequently, CAPE production and severe convective weather may be significantly affected by regional-scale land-use changes and by climate change.
Significance Statement
The energy available for severe convective storms depends strongly on the properties of the underlying soil and vegetation and the temperature of air masses formed over dry terrain upstream. This implies that the severity of convective storms can be strongly affected by changes in land use and by climate change.
Abstract
Banner clouds are clouds in the lee of steep mountains or sharp ridges on otherwise cloud-free days. Previous studies investigated various aspects of banner cloud formation in numerical simulations, most of which were based on idealized orography and a neutrally stratified ambient atmosphere. The present study extends these simulations in two important directions by 1) examining the impact of various types of orography ranging from an idealized pyramid to the realistic orography of Mount Matterhorn and 2) accounting for an ambient atmosphere that turns from neutral to stably stratified below the mountain summit. Not surprisingly, realistic orography introduces asymmetries in the spanwise direction. At the same time, banner cloud occurrence remains associated with a coherent area of strong uplift, although this region does not have to be located exclusively in the lee of the mountain any longer. In the case of Mount Matterhorn with a westerly ambient flow, a large fraction of air parcels rises along the southern face of the mountain, before they reach the lee and are lifted into the banner cloud. The presence of a shallow boundary layer with its top below the mountain summit introduces more complex behavior compared to a neutrally stratified boundary layer; in particular, it introduces a dependence on wind speed, because strong wind is associated with strong turbulence that is able to raise the boundary layer height and, thus, facilitates the formation of a banner cloud.
Abstract
Banner clouds are clouds in the lee of steep mountains or sharp ridges on otherwise cloud-free days. Previous studies investigated various aspects of banner cloud formation in numerical simulations, most of which were based on idealized orography and a neutrally stratified ambient atmosphere. The present study extends these simulations in two important directions by 1) examining the impact of various types of orography ranging from an idealized pyramid to the realistic orography of Mount Matterhorn and 2) accounting for an ambient atmosphere that turns from neutral to stably stratified below the mountain summit. Not surprisingly, realistic orography introduces asymmetries in the spanwise direction. At the same time, banner cloud occurrence remains associated with a coherent area of strong uplift, although this region does not have to be located exclusively in the lee of the mountain any longer. In the case of Mount Matterhorn with a westerly ambient flow, a large fraction of air parcels rises along the southern face of the mountain, before they reach the lee and are lifted into the banner cloud. The presence of a shallow boundary layer with its top below the mountain summit introduces more complex behavior compared to a neutrally stratified boundary layer; in particular, it introduces a dependence on wind speed, because strong wind is associated with strong turbulence that is able to raise the boundary layer height and, thus, facilitates the formation of a banner cloud.
Abstract
Many climate models exhibit a dry and warm bias over the central United States during the summer months, including the Energy Exascale Earth System Model (E3SM) and its Multiscale Modeling Framework (MMF) configuration. Understanding the causes of this bias is important to shine a light on this common model error and reduce the uncertainty in future projections. In this study, we use E3SMv2 and E3SM-MMF to assess how parameterized and resolved convection affect temperature and precipitation biases over the Southern Great Plains site of the Atmospheric Radiation Measurement program. Both configurations overestimate near-surface temperature and underestimate precipitation at the ARM SGP site. The bias is associated with a lack of low-level clouds during days without precipitation and too much incoming solar radiation causing the surface to warm. Low-level cloud fraction in E3SM-MMF during the nonprecipitating days is lower in comparison to E3SMv2 and observation, consistent with the larger warm bias. We also find that the underestimated precipitation can be characterized as “too frequent, too weak” in E3SMv2 and “too rare, too intense” in E3SM-MMF. These deficiencies conspire to sustain the warm and dry bias over the central United States.
Abstract
Many climate models exhibit a dry and warm bias over the central United States during the summer months, including the Energy Exascale Earth System Model (E3SM) and its Multiscale Modeling Framework (MMF) configuration. Understanding the causes of this bias is important to shine a light on this common model error and reduce the uncertainty in future projections. In this study, we use E3SMv2 and E3SM-MMF to assess how parameterized and resolved convection affect temperature and precipitation biases over the Southern Great Plains site of the Atmospheric Radiation Measurement program. Both configurations overestimate near-surface temperature and underestimate precipitation at the ARM SGP site. The bias is associated with a lack of low-level clouds during days without precipitation and too much incoming solar radiation causing the surface to warm. Low-level cloud fraction in E3SM-MMF during the nonprecipitating days is lower in comparison to E3SMv2 and observation, consistent with the larger warm bias. We also find that the underestimated precipitation can be characterized as “too frequent, too weak” in E3SMv2 and “too rare, too intense” in E3SM-MMF. These deficiencies conspire to sustain the warm and dry bias over the central United States.
Abstract
This study investigates the evolution of temperature and lifetime of evaporating, supercooled cloud droplets considering initial droplet radius (r
0) and temperature (
Significance Statement
Cloud droplet temperature plays an important role in fundamental cloud processes like droplet growth and decay, activation of ice-nucleating particles, and determination of radiative parameters like refractive indices of water droplets. Near cloud boundaries such as cloud tops, dry air mixes with cloudy air exposing droplets to environments with low relative humidities. This study examines how the temperature of a cloud droplet that is supercooled (i.e., has an initial temperature < 0°C) evolves in these subsaturated environments. Results show that when supercooled cloud droplets evaporate near cloud boundaries, their temperatures can be several degrees Celsius lower than the surrounding drier environment. The implications of this additional cooling of droplets near cloud edges on ice particle formation are discussed.
Abstract
This study investigates the evolution of temperature and lifetime of evaporating, supercooled cloud droplets considering initial droplet radius (r
0) and temperature (
Significance Statement
Cloud droplet temperature plays an important role in fundamental cloud processes like droplet growth and decay, activation of ice-nucleating particles, and determination of radiative parameters like refractive indices of water droplets. Near cloud boundaries such as cloud tops, dry air mixes with cloudy air exposing droplets to environments with low relative humidities. This study examines how the temperature of a cloud droplet that is supercooled (i.e., has an initial temperature < 0°C) evolves in these subsaturated environments. Results show that when supercooled cloud droplets evaporate near cloud boundaries, their temperatures can be several degrees Celsius lower than the surrounding drier environment. The implications of this additional cooling of droplets near cloud edges on ice particle formation are discussed.
Abstract
Multiple recent observations in the mesosphere have revealed large-scale Kelvin–Helmholtz instabilities (KHI) exhibiting diverse spatial features and temporal evolutions. The first event reported by Hecht et al. exhibited multiple features resembling those seen to arise in early laboratory shear-flow studies described as “tube” and “knot” (T&K) dynamics by Thorpe. The potential importance of T&K dynamics in the atmosphere, and in the oceans and other stratified and sheared fluids, is due to their accelerated turbulence transitions and elevated energy dissipation rates relative to KHI turbulence transitions occurring in their absence. Motivated by these studies, we survey recent observational evidence of multiscale Kelvin–Helmholtz instabilities throughout the atmosphere, many features of which closely resemble T&K dynamics observed in the laboratory and idealized initial modeling. These efforts will guide further modeling assessing the potential importance of these T&K dynamics in turbulence generation, energy dissipation, and mixing throughout the atmosphere and other fluids. We expect these dynamics to have implications for parameterizing mixing and transport in stratified shear flows in the atmosphere and oceans that have not been considered to date. Companion papers describe results of a multiscale gravity wave direct numerical simulation (DNS) that serendipitously exhibits a number of KHI T&K events and an idealized multiscale DNS of KHI T&K dynamics without gravity wave influences.
Significance Statement
Kelvin–Helmholtz instabilities (KHI) occur throughout the atmosphere and induce turbulence and mixing that need to be represented in weather prediction and other models of the atmosphere and oceans. This paper documents recent atmospheric evidence for widespread, more intense, features of KHI dynamics that arise where KH billows are initially discontinuous, misaligned, or varying along their axes. These features initiate strong local vortex interactions described as “tubes” and “knots” in early laboratory experiments, suggested by, but not recognized in, earlier atmospheric and oceanic profiling, and only recently confirmed in newer, high-resolution atmospheric imaging and idealized modeling to date.
Abstract
Multiple recent observations in the mesosphere have revealed large-scale Kelvin–Helmholtz instabilities (KHI) exhibiting diverse spatial features and temporal evolutions. The first event reported by Hecht et al. exhibited multiple features resembling those seen to arise in early laboratory shear-flow studies described as “tube” and “knot” (T&K) dynamics by Thorpe. The potential importance of T&K dynamics in the atmosphere, and in the oceans and other stratified and sheared fluids, is due to their accelerated turbulence transitions and elevated energy dissipation rates relative to KHI turbulence transitions occurring in their absence. Motivated by these studies, we survey recent observational evidence of multiscale Kelvin–Helmholtz instabilities throughout the atmosphere, many features of which closely resemble T&K dynamics observed in the laboratory and idealized initial modeling. These efforts will guide further modeling assessing the potential importance of these T&K dynamics in turbulence generation, energy dissipation, and mixing throughout the atmosphere and other fluids. We expect these dynamics to have implications for parameterizing mixing and transport in stratified shear flows in the atmosphere and oceans that have not been considered to date. Companion papers describe results of a multiscale gravity wave direct numerical simulation (DNS) that serendipitously exhibits a number of KHI T&K events and an idealized multiscale DNS of KHI T&K dynamics without gravity wave influences.
Significance Statement
Kelvin–Helmholtz instabilities (KHI) occur throughout the atmosphere and induce turbulence and mixing that need to be represented in weather prediction and other models of the atmosphere and oceans. This paper documents recent atmospheric evidence for widespread, more intense, features of KHI dynamics that arise where KH billows are initially discontinuous, misaligned, or varying along their axes. These features initiate strong local vortex interactions described as “tubes” and “knots” in early laboratory experiments, suggested by, but not recognized in, earlier atmospheric and oceanic profiling, and only recently confirmed in newer, high-resolution atmospheric imaging and idealized modeling to date.
Abstract
A companion paper by Fritts et al. reviews evidence for Kelvin–Helmholtz instability (KHI) “tube” and “knot” (T&K) dynamics that appear to be widespread throughout the atmosphere. Here we describe the results of an idealized direct numerical simulation of multiscale gravity wave dynamics that reveals multiple larger- and smaller-scale KHI T&K events. The results enable assessments of the environments in which these dynamics arise and their competition with concurrent gravity wave breaking in driving turbulence and energy dissipation. A larger-scale event is diagnosed in detail and reveals diverse and intense T&K dynamics driving more intense turbulence than occurs due to gravity wave breaking in the same environment. Smaller-scale events reveal that KHI T&K dynamics readily extend to weaker, smaller-scale, and increasingly viscous shear flows. Our results suggest that KHI T&K dynamics should be widespread, perhaps ubiquitous, wherever superposed gravity waves induce intensifying shear layers, because such layers are virtually always present. A second companion paper demonstrates that KHI T&K dynamics exhibit elevated turbulence generation and energy dissipation rates extending to smaller Reynolds numbers for relevant KHI scales wherever they arise. These dynamics are suggested to be significant sources of turbulence and mixing throughout the atmosphere that are currently ignored or underrepresented in turbulence parameterizations in regional and global models.
Significance Statement
Atmospheric observations reveal that Kelvin–Helmholtz instabilities (KHI) often exhibit complex interactions described as “tube” and “knot” (T&K) dynamics in the presence of larger-scale gravity waves (GWs). These dynamics may prove to make significant contributions to energy dissipation and mixing that are not presently accounted for in large-scale modeling and weather prediction. We explore here the occurrence of KHI T&K dynamics in an idealized model that describes their behavior and character arising at larger and smaller scales due to superposed, large-amplitude GWs. The results reveal that KHI T&K dynamics arise at larger and smaller scales, and that their turbulence intensities can be comparable to those of the GWs.
Abstract
A companion paper by Fritts et al. reviews evidence for Kelvin–Helmholtz instability (KHI) “tube” and “knot” (T&K) dynamics that appear to be widespread throughout the atmosphere. Here we describe the results of an idealized direct numerical simulation of multiscale gravity wave dynamics that reveals multiple larger- and smaller-scale KHI T&K events. The results enable assessments of the environments in which these dynamics arise and their competition with concurrent gravity wave breaking in driving turbulence and energy dissipation. A larger-scale event is diagnosed in detail and reveals diverse and intense T&K dynamics driving more intense turbulence than occurs due to gravity wave breaking in the same environment. Smaller-scale events reveal that KHI T&K dynamics readily extend to weaker, smaller-scale, and increasingly viscous shear flows. Our results suggest that KHI T&K dynamics should be widespread, perhaps ubiquitous, wherever superposed gravity waves induce intensifying shear layers, because such layers are virtually always present. A second companion paper demonstrates that KHI T&K dynamics exhibit elevated turbulence generation and energy dissipation rates extending to smaller Reynolds numbers for relevant KHI scales wherever they arise. These dynamics are suggested to be significant sources of turbulence and mixing throughout the atmosphere that are currently ignored or underrepresented in turbulence parameterizations in regional and global models.
Significance Statement
Atmospheric observations reveal that Kelvin–Helmholtz instabilities (KHI) often exhibit complex interactions described as “tube” and “knot” (T&K) dynamics in the presence of larger-scale gravity waves (GWs). These dynamics may prove to make significant contributions to energy dissipation and mixing that are not presently accounted for in large-scale modeling and weather prediction. We explore here the occurrence of KHI T&K dynamics in an idealized model that describes their behavior and character arising at larger and smaller scales due to superposed, large-amplitude GWs. The results reveal that KHI T&K dynamics arise at larger and smaller scales, and that their turbulence intensities can be comparable to those of the GWs.
Abstract
The moist static energy (MSE) budget is widely used to understand moist atmospheric thermodynamics. However, the budget is not exact, and the accuracy of the approximations that yield it has not been examined rigorously in the context of large-scale tropical motions (horizontal scales ≥ 1000 km). A scale analysis shows that these approximations are most accurate in systems whose latent energy anomalies are considerably larger than the geopotential and kinetic energy anomalies. This condition is satisfied in systems that exhibit phase speeds and horizontal winds on the order of 10 m s−1 or less. Results from a power spectral analysis of data from the DYNAMO field campaign and ERA5 qualitatively agree with the scaling, although they indicate that the neglected terms are smaller than what the scaling suggests. A linear regression analysis of the MJO events that occurred during DYNAMO yields results that support these findings. It is suggested that the MSE budget is accurate in the tropics because motions within these latitudes are constrained to exhibit small fluctuations in geopotential and kinetic energy as a result of weak temperature gradient (WTG) balance.
Abstract
The moist static energy (MSE) budget is widely used to understand moist atmospheric thermodynamics. However, the budget is not exact, and the accuracy of the approximations that yield it has not been examined rigorously in the context of large-scale tropical motions (horizontal scales ≥ 1000 km). A scale analysis shows that these approximations are most accurate in systems whose latent energy anomalies are considerably larger than the geopotential and kinetic energy anomalies. This condition is satisfied in systems that exhibit phase speeds and horizontal winds on the order of 10 m s−1 or less. Results from a power spectral analysis of data from the DYNAMO field campaign and ERA5 qualitatively agree with the scaling, although they indicate that the neglected terms are smaller than what the scaling suggests. A linear regression analysis of the MJO events that occurred during DYNAMO yields results that support these findings. It is suggested that the MSE budget is accurate in the tropics because motions within these latitudes are constrained to exhibit small fluctuations in geopotential and kinetic energy as a result of weak temperature gradient (WTG) balance.