Browse

You are looking at 1 - 10 of 14,334 items for :

  • Journal of the Atmospheric Sciences x
  • User-accessible content x
Clear All
Michael J. Reeder, Thomas Spengler, and Clemens Spensberger

Abstract

It is thought that the sensible heat fluxes associated with sea surface temperature (SST) fronts can affect the genesis and evolution of atmospheric fronts. An analytic model is developed and used to explore this idea. The model predictions are compared with climatologies of atmospheric fronts over the North Atlantic Ocean identified in reanalyses. The climatologies are divided into times when fronts are detected at a point and times when they are not, and compared with model results with and without fronts in their initial conditions. In airstreams with fronts, both the climatologies and model show that adiabatic frontogenesis is much more important than diabatic frontogenesis. They also show that there is weak diabatic frontogenesis associated with differential sensible heating over the SST front and frontolysis either side of it. Because of the upstream and downstream frontolysis, the SST front has relatively little net effect on atmospheric fronts in the model. This result holds true as the width and strength of the SST front changes. In airstreams initially without fronts, a combination of adiabatic and diabatic frontogenesis is important for the local genesis of atmospheric fronts over the SST front. The model shows sustained frontogenesis only when the deformation is sufficiently strong or when the translation speed is low, as advection otherwise weakens the potential temperature gradient. This strong localized diabatic frontogenesis, which is amplified by adiabatic frontogenesis, can result in a front, which is consistent with atmospheric fronts in the region being most frequently located along the SST front.

Open access
Xin Li, Zhaoxia Pu, and Zhiqiu Gao

Abstract

Horizontal boundary layer roll vortices are a series of large-scale turbulent eddies that prevail in a hurricane’s boundary layer. In this paper, a one-way nested sub-kilometer-scale large-eddy simulation (LES) based on the Weather Research and Forecasting (WRF) Model was used to examine the impact of roll vortices on the evolution of Hurricane Harvey around its landfall from 0000 UTC 25 August to 1800 UTC 27 August 2017. The simulation results imply that the turbulence in the LES can be attributed mainly to roll vortices. With the representation of roll vortices, the LES provided a better simulation of hurricane wind vertical structure and precipitation. In contrast, the mesoscale simulation with the YSU PBL scheme overestimated the precipitation for the hurricane over the ocean. Further analysis indicates that the roll vortices introduced a positive vertical flux and thinner inflow layer, whereas a negative flux maintained the maximum tangential wind at around 400 m above ground. During hurricane landfall, the weak negative flux maintained the higher wind in the LES. The overestimated low-level vertical flux in the mesoscale simulation with the YSU scheme led to overestimated hurricane intensity over the ocean and accelerated the decay of the hurricane during landfall. Rainfall analysis reveals that the roll vortices led to a weak updraft and insufficient water vapor supply in the LES. For the simulation with the YSU scheme, the strong updraft combined with surplus water vapor eventually led to unrealistic heavy rainfall for the hurricane over the ocean.

Open access
Ofer Shamir, Chen Schwartz, Chaim I. Garfinkel, and Nathan Paldor

Abstract

A yet unexplained feature of the tropical wavenumber–frequency spectrum is its parity distribution, i.e., the distribution of power between the meridionally symmetric and antisymmetric components of the spectrum. Due to the linearity of the decomposition to symmetric and antisymmetric components and the Fourier analysis, the total spectral power equals the sum of the power contained in each of these two components. However, the spectral power need not be evenly distributed between the two components. Satellite observations and reanalysis data provide ample evidence that the parity distribution of the tropical wavenumber–frequency spectrum is biased toward its symmetric component. Using an intermediate-complexity model of an idealized moist atmosphere, we find that the parity distribution of the tropical spectrum is nearly insensitive to large-scale forcing, including topography, ocean heat fluxes, and land–sea contrast. On the other hand, we find that a small-scale (stochastic) forcing has the capacity to affect the parity distribution at large spatial scales via an upscale (inverse) turbulent energy cascade. These results are qualitatively explained by considering the effects of triad interactions on the parity distribution. According to the proposed mechanism, any bias in the small-scale forcing, symmetric or antisymmetric, leads to symmetric bias in the large-scale spectrum regardless of the source of variability responsible for the onset of the asymmetry. As this process is also associated with the generation of large-scale features in the tropics by small-scale convection, the present study demonstrates that the physical process associated with deep convection leads to a symmetric bias in the tropical spectrum.

Open access
Chaim I Garfinkel, Ofer Shamir, Itzhak Fouxon, and Nathan Paldor

Abstract

Variability in the tropical atmosphere is concentrated at wavenumber–frequency combinations where linear theory indicates wave modes can freely propagate, but with substantial power in between. This study demonstrates that such a power spectrum can arise from small-scale convection triggering large-scale waves via wave–wave interactions in a moderately turbulent fluid. Two key pieces of evidence are provided for this interpretation of tropical dynamics using a nonlinear rotating shallow-water model: a parameter sweep experiment in which the amplitude of an external forcing is gradually ramped up, and also an external forcing in which only symmetric or only antisymmetric modes are forced. These experiments do not support a commonly accepted mechanism involving the forcing projecting directly onto the wave modes with a strong response, yet still simulate a power spectrum resembling that observed, though the linear projection mechanism could still complement the mechanism proposed here in observations. Interpreting the observed tropical power spectrum using turbulence offers a simple explanation as to why power should be concentrated at the theoretical wave modes, and also provides a solid footing for the common assumption that the background spectrum is red, even as it clarifies why there is no expectation for a turbulent cascade with a specific, theoretically derived slope such as −5/3. However, it does explain why the cascade should be toward lower wavenumbers, that is an inverse energy cascade, similar to the midlatitudes even as compressible wave modes are important for tropical dynamics.

Open access

Large-Eddy Simulations of Stability-Varying Atmospheric Boundary Layer Flow over Isolated Buildings

Hyeyum Hailey Shin, Domingo Muñoz-Esparza, Jeremy A. Sauer, and Matthias Steiner

Abstract

This study explores the response of flow around isolated cuboid buildings to variations in the incoming turbulence arising from changes in atmospheric boundary layer (ABL) stability using a building-resolving large-eddy simulation (LES) technique with explicit representation of building effects through an immersed body force method. An extensive suite of LES for a neutral ABL with different model resolution and advection scheme configurations reveals that at least 6, 12, and 24 grid points per building side are required in order to resolve building-induced vortex shedding, mean-flow features, and turbulence statistics, respectively, with an advection scheme of a minimum of third order. Using model resolutions that meet this requirement, 21 building-resolving simulations are performed under varying atmospheric stability conditions, from weakly stable to convective ABLs, and for different building sizes (H), resulting in L ABL/H ≈ 0.1–10, where L ABL is the integral length scale of the incoming ABL turbulence. The building-induced flow features observed in the canonical neutral ABL simulation, e.g., the upstream horseshoe vortex and the downstream arch vortex, gradually weaken with increasing surface-driven convective instability due to the enhancement of background turbulent mixing. As a result, two local turbulence kinetic energy peaks on the lateral side of the building in nonconvective cases are merged into a single peak in strong convective cases. By considering the ABL turbulence scale and building size altogether, it is shown that the building impact decreases with increasing L ABL/H, as coherent turbulent structures in the ABL become more dominant over a building-induced flow response for L ABL/H > 1.

Open access

Nonlinear Simulations of Gravity Wave Tunneling and Breaking over Auckland Island

Tyler Mixa, Andreas Dörnbrack, and Markus Rapp

Abstract

Horizontally dispersing gravity waves with horizontal wavelengths of 30–40 km were observed at mesospheric altitudes over Auckland Island by the airborne advanced mesospheric temperature mapper during a Deep Propagating Gravity Wave Experiment (DEEPWAVE) research flight on 14 July 2014. A 3D nonlinear compressible model is used to determine which propagation conditions enabled gravity wave penetration into the mesosphere and how the resulting instability characteristics led to widespread momentum deposition. Results indicate that linear tunneling through the polar night jet enabled quick gravity wave propagation from the surface up to the mesopause, while subsequent instability processes reveal large rolls that formed in the negative shear above the jet maximum and led to significant momentum deposition as they descended. This study suggests that gravity wave tunneling is a viable source for this case and other deep propagation events reaching the mesosphere and lower thermosphere.

Open access

Role of Diurnal Cycle in the Maritime Continent Barrier Effect on MJO Propagation in an AGCM

R. S. Ajayamohan, Boualem Khouider, V. Praveen, and Andrew J. Majda

Abstract

The barrier effect of the Maritime Continent (MC) in stalling or modifying the propagation characteristics of the MJO is widely accepted. The strong diurnal cycle of convection over the MC is believed to play a dominant role in this regard. This hypothesis is studied here, with the help of a coarse-resolution atmospheric general circulation model (AGCM). The dry dynamical core of the AGCM is coupled to the multicloud parameterization piggybacked with a dynamical bulk boundary layer model. A set of sensitivity experiments is carried out by systematically varying the strength of the MC diurnal flux to assess the impact of the diurnal convective variability on the MJO propagation. The effects of deterministic and stochastic diurnal forcings on MJO characteristics are compared. It is found that the precipitation and zonal wind variance, on the intraseasonal time scales, over the western Pacific region decreases with the increase in diurnal forcing, indicating the blocking of MC precipitation. An increase in precipitation variance over the MC associated with the weakening of precipitation variance over the west Pacific is evident in all experiments. The striking difference between deterministic and stochastic diurnal forcing experiments is that the strength needed for the deterministic case to achieve the same degree of blocking is almost double that of stochastic case. The stochastic diurnal flux over the MC seems to be more detrimental in blocking the MJO propagation. This hints at the notion that the models with inadequate representation of organized convection tend to suffer from the MC-barrier effect.

Open access
Nicholas J. Weber, Daehyun Kim, and Clifford F. Mass

Abstract

A convectively coupled equatorial Kelvin wave (CCKW) was observed over the equatorial Indian Ocean in early November 2011 during the DYNAMO field campaign. This study examines the structure of the CCKW event using two simulations made using the MPAS model: one with 3-km grid spacing without convective parameterization and another with a 15-km grid and parameterized convection. Both simulations qualitatively capture the observed structure of the CCKW, including its vertical tilt and progression of cloud/precipitation structures. The two simulations, however, differ substantially in the amplitude of the CCKW-associated precipitation. While the 3-km run realistically captures the observed modulation of precipitation by the CCKW, the 15-km simulation severely underestimates its magnitude. To understand the difference between the two MPAS simulations regarding wave–convection coupling within the CCKW, the relationship of precipitation with convective inhibition, saturation fraction, and surface turbulent fluxes is investigated. Results show that the 15-km simulation underestimates the magnitude of the CCKW precipitation peak in association with its unrealistically linear relationship between moisture and precipitation. Precipitation, both in observations and the 3-km run, is predominantly controlled by saturation fraction and this relationship is exponential. In contrast, the parameterized convection in the 15-km run is overly sensitive to convective inhibition and not sensitive enough to environmental moisture. The implications of these results on CCKW theories are discussed.

Open access
Antonio Navarra, Joe Tribbia, and Stefan Klus

Abstract

In the last years, ensemble methods have been widely popular in atmospheric, climate, and ocean dynamics investigations and forecasts as convenient methods to obtain statistical information on these systems. In many cases, ensembles have been used as an approximation to the probability distribution that has acquired more and more a central role, as the importance of a single trajectory, or member, was recognized as less informative. This paper shows that using results from the dynamical systems and more recent results from the machine learning and AI communities, we can arrive at a direct estimation of the probability distribution evolution and also at the formulation of predictor systems based on a nonlinear formulation. The paper introduces the theory and demonstrates its application to two examples. The first is a one-dimensional system based on the Niño-3 index; the second is a multidimensional case based on time series of monthly mean SST in the Pacific. We show that we can construct the probability distribution and set up a system to forecast its evolution and derive various quantities from it. The objective of the paper is not strict realism, but the introduction of these methods and the demonstration that they can be used also in the complex, multidimensional environment typical of atmosphere and ocean applications.

Open access
Peter J. Marinescu, Susan C. van den Heever, Max Heikenfeld, Andrew I. Barrett, Christian Barthlott, Corinna Hoose, Jiwen Fan, Ann M. Fridlind, Toshi Matsui, Annette K. Miltenberger, Philip Stier, Benoit Vie, Bethan A. White, and Yuwei Zhang

Abstract

This study presents results from a model intercomparison project, focusing on the range of responses in deep convective cloud updrafts to varying cloud condensation nuclei (CCN) concentrations among seven state-of-the-art cloud-resolving models. Simulations of scattered convective clouds near Houston, Texas, are conducted, after being initialized with both relatively low and high CCN concentrations. Deep convective updrafts are identified, and trends in the updraft intensity and frequency are assessed. The factors contributing to the vertical velocity tendencies are examined to identify the physical processes associated with the CCN-induced updraft changes. The models show several consistent trends. In general, the changes between the High-CCN and Low-CCN simulations in updraft magnitudes throughout the depth of the troposphere are within 15% for all of the models. All models produce stronger (~+5%–15%) mean updrafts from ~4–7 km above ground level (AGL) in the High-CCN simulations, followed by a waning response up to ~8 km AGL in most of the models. Thermal buoyancy was more sensitive than condensate loading to varying CCN concentrations in most of the models and more impactful in the mean updraft responses. However, there are also differences between the models. The change in the amount of deep convective updrafts varies significantly. Furthermore, approximately half the models demonstrate neutral-to-weaker (~−5% to 0%) updrafts above ~8 km AGL, while the other models show stronger (~+10%) updrafts in the High-CCN simulations. The combination of the CCN-induced impacts on the buoyancy and vertical perturbation pressure gradient terms better explains these middle- and upper-tropospheric updraft trends than the buoyancy terms alone.

Open access