Browse

You are looking at 1 - 10 of 43 items for :

  • Plains Elevated Convection At Night (PECAN) x
  • Refine by Access: Content accessible to me x
Clear All
Hristo G. Chipilski
,
Xuguang Wang
,
David B. Parsons
,
Aaron Johnson
, and
Samuel K. Degelia

Abstract

There is a growing interest in the use of ground-based remote sensors for numerical weather prediction, which is sparked by their potential to address the currently existing observation gap within the planetary boundary layer. Nevertheless, open questions still exist regarding the relative importance of and synergy among various instruments. To shed light on these important questions, the present study examines the forecast benefits associated with several different ground-based profiling networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated verification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill, in terms of both the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexities in the governing moisture dynamics are two factors that can further limit the forecast value extracted from such networks.

Full access
James N. Marquis
,
Adam C. Varble
,
Paul Robinson
,
T. Connor Nelson
, and
Katja Friedrich

Abstract

Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of (i) the mesoscale and boundary layer flow, and (ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary, or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3–5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1–3 km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment.

Open access
Guo Lin
,
Coltin Grasmick
,
Bart Geerts
,
Zhien Wang
, and
Min Deng

Abstract

This observational study documents the consequences of a collision between two converging shallow atmospheric boundaries over the central Great Plains on the evening of 7 June 2015. This study uses data from a profiling airborne Raman lidar [the compact Raman lidar (CRL)] and other airborne and ground-based data collected during the Plains Elevated Convection at Night (PECAN) field campaign to investigate the collision between a weak cold front and the outflow from an MCS. The collision between these boundaries led to the lofting of high-CAPE, low-CIN air, resulting in deep convection, as well as an undular bore. Both boundaries behaved as density currents prior to collision. Because the MCS outflow boundary was denser and less deep than the cold-frontal air mass, the bore propagated over the latter. This bore was tracked by the CRL for about 3 h as it traveled north over the shallow cold-frontal surface and evolved into a soliton. This case study is unique by using the high temporal and spatial resolution of airborne Raman lidar measurements to describe the thermodynamic structure of interacting boundaries and a resulting bore.

Free access
Yun Lin
,
Jiwen Fan
,
Jong-Hoon Jeong
,
Yuwei Zhang
,
Cameron R. Homeyer
, and
Jingyu Wang

Abstract

Changes in land surface and aerosol characteristics from urbanization can affect dynamic and microphysical properties of severe storms, thus affecting hazardous weather events resulting from these storms such as hail and tornadoes. We examine the joint and individual effects of urban land and anthropogenic aerosols of Kansas City on a severe convective storm observed during the 2015 Plains Elevated Convection At Night (PECAN) field campaign, focusing on storm evolution, convective intensity, and hail characteristics. The simulations are carried out at the cloud-resolving scale (1 km) using a version of WRF-Chem in which the spectral-bin microphysics (SBM) is coupled with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). It is found that the urban land effect of Kansas City initiated a much stronger convective cell and the storm got further intensified when interacting with stronger turbulence induced by the urban land. The urban land effect also changed the storm path by diverting the storm toward the city, mainly resulting from enhanced urban land-induced convergence in the urban area and around the urban–rural boundaries. The joint effect of urban land and anthropogenic aerosols enhances occurrences of both severe hail and significant severe hail by ~20% by enhancing hail formation and growth from riming. Overall the urban land effect on convective intensity and hail is relatively larger than the anthropogenic aerosol effect, but the joint effect is more notable than either of the individual effects, emphasizing the importance of considering both effects in evaluating urbanization effects.

Full access
Brian J. Carroll
,
Belay B. Demoz
,
David D. Turner
, and
Ruben Delgado

Abstract

The 2015 Plains Elevated Convection at Night (PECAN) field campaign provided a wealth of intensive observations for improving understanding of interplay between the Great Plains low-level jet (LLJ), mesoscale convective systems (MCSs), and other phenomena in the nocturnal boundary layer. This case study utilizes PECAN ground-based Doppler and water vapor lidar and airborne water vapor lidar observations for a detailed examination of water vapor transport in the Great Plains. The chosen case, 11 July 2015, featured a strong LLJ that helped sustain an MCS overnight. The lidars resolved boundary layer moisture being transported northward, leading to a large increase in water vapor in the lowest several hundred meters above the surface in northern Kansas. A branch of nocturnal convection initiated coincident with the observed maximum water vapor flux. Radiosondes confirmed an increase in convective potential within the LLJ layer. Moist static energy (MSE) growth was generated by increasing moisture in spite of a temperature decrease in the LLJ layer. This unique dataset is also used to evaluate the Rapid Refresh (RAP) analysis model performance, comparing model output against the continuous lidar profiles of water vapor and wind. While the RAP analysis captured the large-scale trends, errors in water vapor mixing ratio were found ranging from 0 to 2 g kg−1 at the ground-based lidar sites. Comparison with the airborne lidar throughout the PECAN domain yielded an RMSE of 1.14 g kg−1 in the planetary boundary layer. These errors mostly manifested as contiguous dry or wet regions spanning spatial scales on the order of ten to hundreds of kilometers.

Full access
Rachel L. Miller
,
Conrad L. Ziegler
, and
Michael I. Biggerstaff

Abstract

This case study analyzes a nocturnal mesoscale convective system (MCS) that was observed on 25–26 June 2015 in northeastern Kansas during the Plains Elevated Convection At Night (PECAN) project. Over the course of the observational period, a broken line of elevated nocturnal convective cells initiated around 0230 UTC on the cool side of a stationary front and subsequently merged to form a quasi-linear MCS that later developed strong, surface-based outflow and a trailing stratiform region. This study combines radar observations with mobile and fixed mesonet and sounding data taken during PECAN to analyze the kinematics and thermodynamics of the MCS from 0300 to 0630 UTC. This study is unique in that 38 consecutive multi-Doppler wind analyses are examined over the 3.5 h observation period, facilitating a long-duration analysis of the kinematic evolution of the nocturnal MCS. Radar analyses reveal that the initial convective cells and linear MCS are elevated and sustained by an elevated residual layer formed via weak ascent over the stationary front. During upscale growth, individual convective cells develop storm-scale cold pools due to pockets of descending rear-to-front flow that are measured by mobile mesonets. By 0500 UTC, kinematic analysis and mesonet observations show that the MCS has a surface-based cold pool and that convective line updrafts are ingesting parcels from below the stable layer. In this environment, the elevated system has become surface based since the cold pool lifting is sufficient for surface-based parcels to overcome the CIN associated with the frontal stable layer.

Free access
Matthew D. Parker
,
Brett S. Borchardt
,
Rachel L. Miller
, and
Conrad L. Ziegler

Abstract

The 25–26 June 2015 nocturnal mesoscale convective system (MCS) from the Plains Elevated Convection at Night (PECAN) field project produced severe winds within an environment that might customarily be associated with elevated convection. This work incorporates both a full-physics real-world simulation and an idealized single-sounding simulation to explore the MCS’s evolution. Initially, the simulated convective systems were elevated, being maintained by wavelike disturbances and lacking surface cold pools. As the systems matured, surface outflows began to appear, particularly where heavy precipitation was occurring, with air in the surface cold pools originating from up to 4–5 km AGL. Via this progression, the MCSs exhibited a degree of self-organization (i.e., structures that are dependent upon an MCS’s particular history). The cold pools eventually became 1.5–3.5 km deep, by which point passive tracers revealed that the convection was at least partly surface based. Soon after becoming surface based, both simulations produced severe surface winds, the strongest of which were associated with embedded low-level mesovortices and their attendant outflow surges and bowing segments. The origin of the simulated mesovortices was likely the downward tilting of system-generated horizontal vorticity (from baroclinity, but also possibly friction) within the simulated MCSs’ outflow, as has been argued in a number of previous studies. Taken altogether, it appears that severe nocturnal MCSs may often resemble their cold pool-driven, surface-based afternoon counterparts.

Free access
Shushi Zhang
,
David B. Parsons
, and
Yuan Wang

Abstract

This study investigates a nocturnal mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) field campaign. A series of wavelike features were observed ahead of this MCS with extensive convective initiation (CI) taking place in the wake of one of these disturbances. Simulations with the WRF-ARW Model were utilized to understand the dynamics of these disturbances and their impact on the MCS. In these simulations, an “elevated bore” formed within an inversion layer aloft in response to the layer being lifted by air flowing up and over the cold pool. As the bore propagated ahead of the MCS, the lifting created an environment more conducive to deep convection allowing the MCS to discretely propagate due to CI in the bore’s wake. The Scorer parameter was somewhat favorable for trapping of this wave energy, although aspects of the environment evolved to be consistent with the expectations for an n = 2 mode deep tropospheric gravity wave. A bore within an inversion layer aloft is reminiscent of disturbances predicted by two-layer hydraulic theory, contrasting with recent studies that suggest bores are frequently initiated by the interaction between the flow within stable nocturnal boundary layer and convectively generated cold pools. Idealized simulations that expand upon this two-layer approach with orography and a well-mixed layer below the inversion suggest that elevated bores provide a possible mechanism for daytime squall lines to remove the capping inversion often found over the Great Plains, particularly in synoptically disturbed environments where vertical shear could create a favorable trapping of wave energy.

Free access
Tammy M. Weckwerth
,
John Hanesiak
,
James W. Wilson
,
Stanley B. Trier
,
Samuel K. Degelia
,
William A. Gallus Jr.
,
Rita D. Roberts
, and
Xuguang Wang

Abstract

Nocturnal convection initiation (NCI) is more difficult to anticipate and forecast than daytime convection initiation (CI). A major component of the Plains Elevated Convection at Night (PECAN) field campaign in the U.S. Great Plains was to intensively sample NCI and its near environment. In this article, we summarize NCI types observed during PECAN: 1 June–16 July 2015. These NCI types, classified using PECAN radar composites, are associated with 1) frontal overrunning, 2) the low-level jet (LLJ), 3) a preexisting mesoscale convective system (MCS), 4) a bore or density current, and 5) a nocturnal atmosphere lacking a clearly observed forcing mechanism (pristine). An example and description of each of these different types of PECAN NCI events are presented. The University of Oklahoma real-time 4-km Weather Research and Forecasting (WRF) Model ensemble forecast runs illustrate that the above categories having larger-scale organization (e.g., NCI associated with frontal overrunning and NCI near a preexisting MCS) were better forecasted than pristine. Based on current knowledge and data from PECAN, conceptual models summarizing key environmental features are presented and physical processes underlying the development of each of these different types of NCI events are discussed.

Full access
Jonathan E. Thielen
and
William A. Gallus Jr.

Abstract

Nocturnal mesoscale convective systems (MCSs) are important phenomena because of their contributions to warm-season precipitation and association with severe hazards. Past studies have shown that their morphology remains poorly forecast in current convection-allowing models operating at 3–4-km horizontal grid spacing. A total of 10 MCS cases occurring in weakly forced environments were simulated using the Weather Research and Forecasting (WRF) Model at 3- and 1-km horizontal grid spacings to investigate the impact of increased resolution on forecasts of convective morphology and its evolution. These simulations were conducted using four microphysics schemes to account for additional sensitivities to the microphysical parameterization. The observed and corresponding simulated systems were manually classified into detailed cellular and linear modes, and the overall morphology depiction and the forecast accuracy of each model configuration were evaluated. In agreement with past studies, WRF was found to underpredict the occurrence of linear modes and overpredict cellular modes at 3-km horizontal grid spacing with all microphysics schemes tested. When grid spacing was reduced to 1 km, the proportion of linear systems increased. However, the increase was insufficient to match observations throughout the evolution of the systems, and the accuracy scores showed no statistically significant improvement. This suggests that the additional linear modes may have occurred in the wrong subtypes, wrong systems, and/or at the wrong times. Accuracy scores were also shown to decrease with forecast length, with the primary decrease in score generally occurring during upscale growth in the early nocturnal period.

Full access