Browse

You are looking at 1 - 10 of 14,896 items for :

  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All
Cunbo Han
,
Corinna Hoose
, and
Viktoria Dürlich

Abstract

Multiple mechanisms have been proposed to explain secondary ice production (SIP), and SIP has been recognized to play a vital role in forming cloud ice crystals. However, most weather and climate models do not consider SIP in their cloud microphysical schemes. In this study, in addition to the default rime splintering (RS) process, two SIP processes, namely, shattering/fragmentation during freezing of supercooled rain/drizzle drops (DS) and breakup upon ice–ice collisions (BR), were implemented into a two-moment cloud microphysics scheme. Besides, two different parameterization schemes for BR were introduced. A series of sensitivity experiments were performed to investigate how SIP impacts cloud microphysics and cloud phase distributions in warm-based deep convective clouds developed in the central part of Europe. Simulation results revealed that cloud microphysical properties were significantly influenced by the SIP processes. Ice crystal number concentrations (ICNCs) increased up to more than 20 times and surface precipitation was reduced by up to 20% with the consideration of SIP processes. Interestingly, BR was found to dominate SIP, and the BR process rate was larger than the RS and DS process rates by four and three orders of magnitude, respectively. Liquid pixel number fractions inside clouds and at the cloud top decreased when implementing all three SIP processes, but the decrease depended on the BR scheme. Peak values of ice enhancement factors (IEFs) in the simulated deep convective clouds were 102–104 and located at −24°C with the consideration of all three SIP processes, while the temperature dependency of IEF was sensitive to the BR scheme. However, if only RS or RS and DS processes were included, the IEFs were comparable, with peak values of about 6, located at −7°C. Moreover, switching off the cascade effect led to a remarkable reduction in ICNCs and ice crystal mass mixing ratios.

Significance Statement

The cloud phase is found to have a significant impact on cloud evolution, radiative properties, and precipitation formation. However, the simulation of the cloud phase is a big challenge for cloud research because multiple processes are not well described or missing in numerical models. In this study, we implemented two secondary ice production (SIP) processes, namely, shattering/fragmentation during the freezing of supercooled rain/drizzle drops and breakup upon ice–ice collisions, which are missing in most numerical models. Sensitivity experiments were conducted to investigate how SIP impacts cloud microphysics and cloud phase in deep convective clouds. We found that SIP significantly impacts in-cloud and cloud-top phase distribution. We also identified that the collisional breakup of ice particles is the dominant SIP process in the simulated deep convective clouds.

Open access
Weixuan Xu
,
Baylor Fox-Kemper
,
Jung-Eun Lee
,
J. B. Marston
, and
Ziyan Zhu

Abstract

The rotation of Earth breaks time-reversal and reflection symmetries in an opposite sense north and south of the equator, leading to a topological origin for certain atmospheric and oceanic equatorial waves. Away from the equator, the rotating shallow-water and stably stratified primitive equations exhibit Poincaré inertia–gravity waves that have nontrivial topology as evidenced by their strict superinertial time scale and a phase singularity in frequency–wavevector space. This nontrivial topology then predicts, via the principle of bulk-interface correspondence, the existence of two equatorial waves along the equatorial interface, the Kelvin and Yanai waves. To directly test the nontrivial topology of Poincaré-gravity waves in observations, we examine ERA5 data and study cross correlations between the wind velocity and geopotential height of the midlatitude stratosphere at the 50 hPa height. We find the predicted vortex and antivortex in the relative phase of the geopotential height and velocity at the high frequencies of the waves. By contrast, lower-frequency planetary waves are found to have trivial topology also as expected from theory. These results demonstrate a new way to understand stratospheric waves and provide a new qualitative tool to investigate waves in other components of the climate system.

Open access
Catherine C. Ivanovich
,
Adam H. Sobel
,
Radley M. Horton
, and
Colin Raymond

Abstract

Extreme wet-bulb temperatures (Tw ) are often used as indicators of heat stress. However, humid heat extremes are fundamentally compound events, and a given Tw can be generated by various combinations of temperature and humidity. Differentiating between extreme humid heat driven by temperature versus humidity is essential to identifying these extremes’ physical drivers and preparing for their distinct impacts. Here we explore the variety of combinations of temperature and humidity contributing to humid heat experienced across the globe. In addition to using traditional metrics, we derive a novel thermodynamic state variable named “stickiness.” Analogous to the oceanographic variable “spice” (which quantifies the relative contributions of temperature and salinity to a given water density), stickiness quantifies the relative contributions of temperature and specific humidity to a given Tw . Consistent across metrics, we find that high magnitudes of Tw tend to occur in the presence of anomalously high moisture, with temperature anomalies of secondary importance. This widespread humidity dependence is consistent with the nonlinear relationship between temperature and specific humidity as prescribed by the Clausius–Clapeyron relationship. Nonetheless, there is a range of stickiness observed at moderate-to-high Tw thresholds. Stickiness allows a more objective evaluation of spatial and temporal variability in the temperature versus humidity dependence of humid heat than traditional variables. In regions with high temporal variability in stickiness, predictive skill for humid heat-related impacts may improve by considering fluctuations in atmospheric humidity in addition to dry-bulb temperature.

Significance Statement

Extreme humid heat increases the risk of heat stress through its influence over humans’ ability to cool down by sweating. Understanding whether humid heat extremes are generated more due to elevated temperature or humidity is important for identifying factors that may increase local risk, preparing for associated impacts, and developing targeted adaptation measures. Here we explore combinations of temperature and humidity across the globe using traditional metrics and by deriving a new variable called “stickiness.” We find that extreme humid heat at dangerous thresholds occurs primarily due to elevated humidity, but that stickiness allows for thorough analysis of the drivers of humid heat at lower thresholds, including identification of regions prone to low- or high-stickiness extremes.

Open access
Free access
Morgan E O’Neill
and
Daniel R. Chavas
Open access
Ming Cai
,
Xiaoming Hu
,
Jie Sun
,
Feng Ding
, and
Jing Feng

Abstract

This paper introduces a climate feedback kernel, referred to as the “energy gain kernel” (EGK). EGK allows for separating the net longwave radiative energy perturbations given by a Planck feedback matrix explicitly into thermal energy emission perturbations of individual layers, and thermal radiative energy flux convergence perturbations at individual layers resulting from the coupled atmosphere-surface temperature changes in response to the unit forcing in individual layers. The former is represented by the diagonal matrix of a Planck feedback matrix and the latter by EGK. Elements of EGK are all positive, representing amplified energy perturbations at a layer where forcing is imposed and energy gained at other layers, both of which are achieved through radiative thermal coupling within an atmosphere-surface column.

Applying EGK to input energy perturbations, whether external or internal due to responses of non-temperature feedback processes to external energy perturbations, such as water vapor and albedo feedbacks, yields their total energy perturbations amplified through radiative thermal coupling within an atmosphere-surface column.

As the strength of EGK depends exclusively on climate mean states, it offers a solution for effectively and objectively separating control climate state information from climate perturbations for climate feedback studies. Given that an EGK comprises critical climate mean state information on mean temperature, water vapor, clouds, and surface pressure, we envision that the diversity of EGK across different climate models could provide insight into the inquiry of why, under the same anthropogenic greenhouse gas increase scenario, different models yield varying degrees of global mean surface warming.

Open access
Fran Morris
,
Juliane Schwendike
,
Douglas J. Parker
, and
Caroline Bain

Abstract

Understanding how mesoscale convection interacts with synoptic-scale circulations over West Africa is crucial for improving regional weather forecasts and developing convection parameterizations to address biases in climate models. A 10-yr pan-African convection-permitting simulation and a corresponding parameterized simulation for current-climate conditions are used to calculate the circulation budget around a synoptic region over the diurnal cycle, splitting processes that modulate circulation tendency (vorticity accumulation and vortex tilting) into diurnal mean and anomalous contributions. Dynamical fields are composited around precipitating grid cells during afternoon and overnight convection to understand how the mesoscale convection modulates synoptic-scale processes, and the composites are compared with an observational case. The dominant process modulating circulation tendency was found to be synoptic-scale vorticity accumulation, which is similar in the two simulations. The greatest difference between the simulated budgets was the tilting term. We propose that the tilting term is affected by convective momentum transport associated with precipitating systems crossing the boundary of the region, whereas the stretching term relies on the convergence and divergence induced by storms within the region. The simulation with parameterized convection captures the heating profile similarly to the simulation with explicit convection, but there are marked differences in convective momentum transport. An accurate vertical convergence structure as well as momentum transport must be simulated in parameterizations to correctly represent the impacts of convection on circulation.

Significance Statement

We used climate simulations with explicit convection and a convection parameterization to interrogate the relationship between mesoscale convection and synoptic-scale circulation over West Africa. We examined the typical behavior of mesoscale precipitating systems in both simulations and compared this with an observation of a storm. We also investigated how synoptic circulation changed over a diurnal cycle in both simulations. The biggest differences between the simulations were caused by how mesoscale systems in each simulation transport momentum when they cross the boundaries of a circulation, but the greatest impact on synoptic circulation was from the patterns of convergence and divergence induced by mesoscale systems, which are very similar in both simulations. Convection parameterizations should prioritize improving the representation of momentum transport.

Open access
Free access
Elian Vanderborght
,
Jonathan Demaeyer
,
Georgy Manucharyan
,
Woosok Moon
, and
Henk A. Dijkstra

Abstract

In recent theory trying to explain the origin of baroclinic low-frequency atmospheric variability, the concept of eddy memory has been proposed. In this theory, the effect of synoptic-scale heat fluxes on the planetary-scale mean flow depends on the history of the mean meridional temperature gradient. Mathematically, this involves the convolution of a memory kernel with the mean meridional temperature gradient over past times. However, the precise shape of the memory kernel and its connection to baroclinic wave dynamics remains to be explained. In this study we use linear and proxy response theory to determine the shape of the memory kernel of a truncated two-layer quasigeostrophic atmospheric model. We find a memory kernel that relates the eddy heat flux to the zonal mean meridional temperature gradient on time scales greater than 2 days. Although the shape of the memory kernel is complex, we show that it may be well approximated as an exponential, particularly when reproducing baroclinic low-frequency intraseasonal modes of variability. By computing the terms in the Lorenz energy cycle, we find that the shape of the memory kernel can be linked to the finite time that growing baroclinic instabilities require to adapt their growth properties to the local zonal mean atmospheric flow stability. Regarding the explanation for observed baroclinic annular modes in the Southern Hemisphere, our results suggest that it is physical for these modes to be derived directly from the thermodynamic equation by considering an exponentially decaying memory kernel, provided accurate estimates of the necessary parameters are incorporated.

Significance Statement

The goal of this study was to derive the memory of the zonal mean temperature field contained in eddy heat fluxes. To do this we used recent developments in a theory stemming from statistical mechanics, called proxy response theory. This theory facilitated direct numerical computations of the parameterization that links eddy heat fluxes to the zonal mean temperature field. Notably, this parameterization incorporates a crucial memory component, which we demonstrated to be essential in explaining the periodicity of low-frequency modes of variability, specifically the baroclinic annular mode (BAM). Understanding the role of memory as a driver of this variability holds great significance, as the BAM constitutes a dominant pattern of large annular variability within the Southern Hemisphere circulation. Enhanced comprehension of this driver, which is memory, can lead to improved understanding and predictive capabilities concerning observed annular weather patterns.

Open access
Scott W. Powell

Abstract

An idealized large-eddy simulation of a tropical marine cloud population was performed. At any time, it contained hundreds of clouds, and updraft width in shallow convection emerging from a subcloud layer appeared to be an important indicator of whether specific convective elements deepened. In an environment with 80%–90% relative humidity below the 0°C level, updrafts that penetrated the 0°C level were larger at and above cloud base, which occurred at the lifting condensation level near 600 m. Parcels rising in these updrafts appeared to emerge from boundary layer eddies that averaged ∼200 m wider than those in clouds that only reached 1.5–3 km height. The deeply ascending parcels (growers) possessed statistically similar values of effective buoyancy below the level of free convection (LFC) as parcels that began to ascend in a cloud but stopped before reaching 3000 m (nongrowers). The growers also experienced less dilution above the LFC. Nongrowers were characterized by negative effective buoyancy and rapid deceleration above the LFC, while growers continued to accelerate well above the LFC. Growers occurred in areas with a greater magnitude of background convergence (or weaker divergence) in the subcloud layer, especially between 300 m and cloud base, but whether the convergence actually led to eddy widening is unclear.

Significance Statement

Cumulonimbus clouds are responsible for many extreme weather phenomena and are important contributors to Earth’s energy balance. However, the processes leading to the growth of individual clouds are not completely understood nor well-represented in weather prediction models. We find that the clouds containing updrafts that start out wider at early stages of their life cycles grow taller, possibly because they are protected more from drier air outside the cloud than narrow clouds. In addition, this work shows how the initial width of clouds might be related to convergence in the lowest part of the atmosphere, at heights where clouds initially develop. However, meteorologists must be careful not to overinterpret these results because numerical simulations inherently include assumptions that may not reflect reality. This reinforces the need to also observe processes occurring at the scales of individual clouds.

Open access