Browse

You are looking at 1 - 6 of 6 items for :

  • Monthly Weather Review x
  • Years of the Maritime Continent x
  • Refine by Access: Content accessible to me x
Clear All
Satoru Yokoi, Shuichi Mori, Fadli Syamsudin, Urip Haryoko, and Biao Geng

Abstract

The diurnal cycle over tropical coastal waters is characterized by offshore migration of precipitation area during nighttime. This study analyzes in situ observational data collected during the YMC-Sumatra 2017 field campaign around the western coast of Sumatra Island, Indonesia, to examine the offshore migration phenomenon during 5–31 December 2017, when the Research Vessel Mirai was deployed about 90 km off the coast to perform observation. The offshore migration is observed in only less than a half of the 27 days. A comparison of radiosonde data at the vessel between days with and without the offshore migration reveals that vertical wind shear in the lower troposphere is a key environmental condition. In late afternoon of the days with the offshore migration, offshore (northeasterly) wind shear with height with considerable magnitude is observed, which is due to weaker daily mean southwesterly wind in the lower free troposphere, stronger southwesterly wind in the boundary layer, and sea breeze. As this condition is considered favorable for regeneration of convective cells to the offshore side of old ones, these results support an idea that the regeneration process is critical for the offshore migration. The Madden–Julian oscillation and cold surges play some roles in the weakening of the free-tropospheric wind. The migration speed is estimated at 2–3 m s−1, which is lower than that observed in another field campaign conducted in 2015 (Pre-YMC 2015). This difference is partly due to the difference in the environmental wind in the lower to midtroposphere.

Open access
Ewan Short, Claire L. Vincent, and Todd P. Lane

Abstract

The diurnal cycle of surface winds throughout the Maritime Continent plays a significant role in the formation of precipitation over the islands of the region and over the surrounding seas. This study investigates the connection between the diurnal cycles of surface wind and offshore precipitation using data from four satellite scatterometer instruments and two satellite precipitation radar instruments. For the first time, data from three scatterometer instruments are combined to yield a more temporally complete picture of the surface wind diurnal cycles over the Maritime Continent’s surrounding seas. The results indicate that land–sea breezes typically propagate over 400 km offshore, produce mean wind perturbations of between 1 and 5 m s−1, and propagate as gravity waves at 25–30 m s−1. Diurnal precipitation cycles are affected through gravity wave propagation processes associated with the land–sea breezes, and through the convergence of land breezes from nearby islands. These observational results are then compared with previous mesoscale modeling results. It is shown that land–sea breezes occur too early, and are too intense in these modeling results, and this may partly explain why these modeling results also exhibit an early, overly intense diurnal precipitation cycle. This study also investigates variations in the diurnal cycle of surface winds at seasonal and intraseasonal time scales. Previous work has suggested that seasonal and intraseasonal variations in surface heating affect the land–sea breeze circulation and diurnal precipitation cycles; we argue that variations in background winds also play a defining role in modulating coastally influenced local winds.

Full access
Anurag Dipankar, Stuart Webster, Xiang-Yu Huang, and Van Quang Doan

Abstract

Biases in simulating the diurnal cycle of convection near the western coast of the island of Sumatra have been investigated using the data from the pilot field campaign of the Years of the Maritime Continent (pre-YMC). The campaign was carried out at a sea [Research Vessel (R/V) Mirai] and a land (Bengkulu, Sumatra) site. Simulations are performed using a tropical configuration of the Met Office model at a grid resolution of 1.5 km in a limited-area mode. The focus of this study is to understand how biases in the input conditions from ECMWF high-resolution deterministic forecast affect the diurnal cycle. Modeled precipitation is found to be delayed and weak, with cold SST bias in the model as the key contributing factor affecting convection at both sites. Colder SST causes a delay in the trigger of convection at Bengkulu by delaying the onset of the local land breeze, which in turn delays the local convergence. The cold outflow from precipitation over the adjacent mountain is also found to be delayed in the model, contributing to the total delay. This delay in the evening convection at Bengkulu is shown to directly affect the timing of nighttime convection at Mirai. Weaker convection at Bengkulu is argued to be due to lower-tropospheric dry humidity bias in the model initial condition. Convection at Mirai is shown to be caused by the convergence of the cold outflow from Bengkulu with the prevailing landward wind over the sea. Both thermodynamic and dynamic conditions near the cold outflow front are found to be less favorable for intense convection in the simulation, the reason for which is argued to be a combination of the cold SST bias and a weaker cold outflow.

Open access
Casey R. Densmore, Elizabeth R. Sanabia, and Bradford S. Barrett

Abstract

The quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.

Full access
Claire L. Vincent and Todd P. Lane

Abstract

Diabatic heating in the Maritime Continent region is controlled by a unique blend of mesoscale variability associated with steep topography and complex coastlines and intraseasonal variability associated with propagating planetary-scale disturbances. In this study, the diabatic heating from a 10-yr austral summer simulation over the Maritime Continent with a 4-km horizontal grid length is analyzed with respect to diurnal, spatial, and intraseasonal variations. Results are compared, where possible, to analogous estimates from the TRMM precipitation radar. We show that the heating budget is largely a balance between latent heating and vertical advection, with rays of heating and cooling extending upward and outward from the coast evident in the advection terms, consistent with the gravity wave representation of the tropical sea breeze. By classifying rainfall into convective and stratiform components, it is shown that simulated convective heating over Sumatra peaks in MJO phases 2 and 3, while simulated stratiform heating peaks in phase 4. Similarly, spectral latent heating estimates from the TRMM Precipitation Radar show that stratiform heating peaks in phases 3 and 4, while convective heating peaks in phases 2 and 3. It is also shown that stratiform precipitation plays a greater role in offshore precipitation during the night, albeit with embedded convective cores, than over the land during the day. These results emphasize the importance of achieving a realistic representation of convective and stratiform processes in high-resolution simulations in the tropics, both for total rainfall estimates and for realistic latent heating.

Full access
Satoru Yokoi, Shuichi Mori, Masaki Katsumata, Biao Geng, Kazuaki Yasunaga, Fadli Syamsudin, Nurhayati, and Kunio Yoneyama

Abstract

This study analyzes data obtained by intensive observation during a pilot field campaign of the Years of the Maritime Continent Project (Pre-YMC) to investigate the diurnal cycle of precipitation in the western coastal area of Sumatra Island. The diurnal cycle during the campaign period (November–December 2015) is found to have a number of similarities with statistical behavior of the diurnal cycle as revealed by previous studies, such as afternoon precipitation over land, nighttime offshore migration of the precipitation zone, and dependency on Madden–Julian oscillation (MJO) phase. Composite analyses of radiosonde soundings from the Research Vessel (R/V) Mirai, deployed about 50 km off the coast, demonstrate that the lower free troposphere starts cooling in late afternoon (a couple of hours earlier than the cooling in the boundary layer), making the lower troposphere more unstable just before precipitation starts to increase. As the nighttime offshore precipitation tends to be more vigorous on days when the cooling in the lower free troposphere is larger, it is possible that the destabilization due to the cooling contributes to the offshore migration of the precipitation zone via enhancement of convective activity. Comparison of potential temperature and water vapor mixing ratio tendencies suggests that this cooling is substantially due to vertical advection by an ascent motion, which is possibly a component of shallow gravity waves. These results support the idea that gravity waves emanating from convective systems over land play a significant role in the offshore migration of the precipitation zone.

Full access