Browse

You are looking at 1 - 10 of 66,284 items for :

  • Refine by Access: Content accessible to me x
Clear All
Hiroaki Ueda, Masaya Kuramochi, Koutarou Takaya, Yuhei Takaya, Saki Asano, and Shuhei Maeda

Abstract

Upper-tropospheric anticyclones (UTACs) emerge throughout the seasons with changing location and intensity. Here, the formation mechanisms of these UTACs, especially in the Asian–Australian–western Pacific sector, were investigated based on the diagnosis of the vorticity equation as well as the contribution of the planetary waves. During June–July–August (JJA), a vigorous UTAC corresponding to the South Asian high (SAH) forms over South Asia, to the south of the Tibetan Plateau, where intense heating associated with the Asian summer monsoon rainfall and the resultant baroclinic Rossby response are the important physical processes. Meanwhile, the produced anticyclonic vorticity is farther transported by the interhemispheric divergent wind toward the Southern Hemisphere (SH), creating the SH UTAC centered over the Maritime Continent. During December–January–February (DJF), two zonally elongated UTACs reside on each side of the equator (∼10° poleward), mainly over the Maritime Continent–western Pacific sector. Upon a closer look at the NH winter, we observed that the northern parts of UTAC cannot be explained by this vorticity balance alone. Diagnosis of the wave activity flux indicated that planetary waves emanating from the cold Eurasian continent converges around the northern parts of the UTAC with its peak in the NH winter, which weakens the subtropical jet, thus generating UTAC. Configuration of the SH summer (DJF) UTAC bears resemblance with that of SAH. These results suggest that the creation of anticyclonic vorticity and its interhemispheric transportation as well as the propagation of planetary wave are the selectively important agents for the genesis of seasonally varying UTACs.

Significance Statement

Recent studies have provided evidence that the South Asian high (formerly Tibetan high) is not a purely thermally driven system only maintained over the elevated Tibetan Plateau. This study aims to understand the physical processes responsible for the genesis of the upper-tropospheric anticyclone, especially in the Asian–Australian–western Pacific sector, throughout the season. During summer in the Northern Hemisphere, deep heating caused by South Asian monsoon rainfall plays a crucial role in the genesis of the South Asian high. The wintertime anticyclone emerging over the subtropical western North Pacific is caused via remote influences anchored with tropical convection and the cold Eurasian continent in which atmospheric teleconnections are important. These findings provide new avenues for research on tropical–extratropical interactions with respect to the formation and variability of important climate phenomena.

Open access
Zixiang Yan, Bo Wu, Tim Li, and Guirong Tan

Abstract

The longitudinal location of precipitation anomalies over the equatorial Pacific shows a distinctive feature with the westernmost location for La Niña, the easternmost location for eastern Pacific (EP) El Niño, and somewhere between for central Pacific (CP) El Niño, even though the center of the sea surface temperature anomaly (SSTA) for La Niña is located slightly east of that of CP El Niño. The mechanisms for such a precipitation diversity were investigated through idealized model simulations and moisture and moist static energy budget analyses. It is revealed that the boundary layer convergence anomalies associated with the precipitation diversity are mainly induced by underlying SSTA through the Lindzen–Nigam mechanism, that is, their longitudinal locations are mainly controlled by the meridional and zonal distributions of the ENSO SSTA. The westward shift of the precipitation anomaly center during La Niña relative to that during CP El Niño is primarily caused by the combined effects of nonlinear zonal moist enthalpy advection anomalies and the Lindzen–Nigam mechanism mentioned above. Such a zonal diversity is further enhanced by the “convection–cloud–longwave radiation” feedback, the SST-induced latent heat flux anomalies, and the advection of mean moist enthalpy by anomalous winds. This diversity in the longitudinal location of precipitation anomalies has contributions to the diversities in the longitudinal locations of anomalous Walker circulation and western North Pacific anomalous anticyclone/cyclone among the three types of ENSO.

Open access
Osamu Miyawaki, Tiffany A. Shaw, and Malte F. Jansen

Abstract

Energy balance and lapse rate regimes qualitatively characterize the low, middle, and high latitudes of Earth’s modern climate. Currently we do not have a complete quantitative understanding of the spatiotemporal structure of energy balance regimes [e.g., radiative convective equilibrium (RCE) and radiative advective equilibrium (RAE)] and their connection to lapse rate regimes (moist adiabat and surface inversion). Here we use the vertically integrated moist static energy budget to define a nondimensional number that quantifies where and when RCE and RAE are approximately satisfied in Earth’s modern climate. We find RCE exists year-round in the tropics and in the northern midlatitudes during summertime. RAE exists year-round over Antarctica and in the Arctic with the exception of early summer. We show that lapse rates in RCE and RAE are consistent with moist adiabatic and surface inversion lapse rates, respectively. We use idealized models (energy balance and aquaplanet) to test the following hypotheses: 1) RCE occurs during midlatitude summer for land-like (small heat capacity) surface conditions, and 2) sea ice is necessary for the existence of annual-mean RAE over a polar ocean, such as the Arctic. Consistent with point 1, an aquaplanet configured with a shallow mixed layer transitions to RCE in the midlatitudes during summertime whereas it does not for a deep mixed layer. Furthermore, we confirm point 2 using mechanism-denial aquaplanet experiments with and without thermodynamic sea ice. Finally, we show energy balance regimes of the modern climate provide a useful guide to the vertical structure of the warming response in the annual mean, and seasonally over the tropics and the southern high latitudes.

Open access
Yusen Liu, Cheng Sun, and Jianping Li

Abstract

The Northern Hemisphere warms faster under global warming and suffers from more frequent heatwaves, causing considerable social and economic damage. The Northern Hemisphere surface warming exhibits strong regionality, with multiple “hotspots” (areas of enhanced warming), but the relations among them remain unclear. This study finds a dominating zonal wavenumber-3 (ZW3) trend pattern in the upper-level geopotential heights during the boreal summer. The summer geopotential heights show significant increasing trends along the latitudinal circle around 60°N, with three centers located over northeastern America, western Eurasia, and eastern Siberia. The regionally enhanced surface warming trends are closely linked to the increased geopotential through the reduced cloud cover, exhibiting a consistent ZW3 pattern. The model simulations forced by sea surface temperature (SST) and Arctic sea ice cover (SIC) indicate that the SST forcing plays an important role in generating the ZW3 pattern, while the contribution of the SIC is minimal. A theoretical barotropic model can fairly well reproduce the observed ZW3 structure forced by a heating source located over the subtropical North Atlantic, where the SSTs show prominent warming trends and a close relationship with the ZW3 pattern. Our results indicate that the hotspots may be interconnected and are related to a Rossby wave train with a ZW3 structure. It highlights a vital role of tropical/subtropical SSTs on the atmospheric circulation and the associated surface enhanced warming over the mid- to high latitudes, which may have great implications for the coordinated heatwave events and tropical–extratropical teleconnections.

Open access
Pengfei Shi, Bin Wang, Yujun He, Hui Lu, Kun Yang, Shiming Xu, Wenyu Huang, Li Liu, Juanjuan Liu, Lijuan Li, and Yong Wang

Abstract

The land surface is a potential source of climate predictability over the Northern Hemisphere midlatitudes but has received less attention than sea surface temperature in this regard. This study quantified the degree to which realistic land initialization contributes to interannual climate predictability over Europe based on a coupled climate system model named FGOALS-g2. The potential predictability provided by the initialization, which incorporates the soil moisture and soil temperature of a land surface reanalysis product into the coupled model with a dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar)-based weakly coupled data assimilation (WCDA) system, was analyzed first. The effective predictability (i.e., prediction skill) of the hindcasts by FGOALS-g2 with realistic and well-balanced initial conditions from the initialization were then evaluated. Results show an enhanced interannual prediction skill for summer surface air temperature and precipitation in the hindcast over Europe, demonstrating the potential benefit from realistic land initialization. This study highlights the significant contributions of land surface to interannual predictability of summer climate over Europe.

Open access
Kai Liu, Kang Xu, Congwen Zhu, and Boqi Liu

Abstract

Marine heatwaves (MHWs) in the South China Sea (SCS) have dramatic impacts on local ecosystems, fisheries, and aquacultures. Our results show that SCS MHWs were strongly regulated by El Niño–Southern Oscillation (ENSO) with a distinct life cycle during 1982–2018. Based on the ENSO-associated sea surface temperature anomaly (SSTA) warming peaks in the SCS, we can classify SCS MHWs into three categories: El Niño-P1 during the first warming peak of El Niño from September to the following February, El Niño-P2 during the second warming peak of El Niño from the following June to September, and La Niña-P1 during the single warming peak of La Niña from the following February to May. The three types of SCS MHWs are all affected by the lower-level enhanced anticyclone over the western North Pacific (WNP), but their physical mechanisms are quite different. In El Niño-P1, SCS MHWs are mostly induced by enhanced net downward shortwave radiation and reduced latent heat flux loss over the southwestern and northern SCS, respectively. In El Niño-P2, SCS MHWs are primarily attributed to weaker entrainment cooling caused by a local enhanced anticyclone and stronger Ekman downwelling in the central-northern SCS. However, in La Niña-P1, SCS MHWs are mainly contributed by the reduced latent heat loss due to the weaker WNP anticyclone centered east of the Philippines on the pentad time scale. The distinct spatial distributions of MHWs show phase locking with ENSO-associated SCS SSTA warming, which provides a potential seasonal forecast of SCS MHWs according to the ENSO phase.

Open access
Ting Liu, Xunshu Song, Youmin Tang, Zheqi Shen, and Xiaoxiao Tan

Abstract

In this study, we conducted an ensemble retrospective prediction from 1881 to 2017 using the Community Earth System Model to evaluate El Niño–Southern Oscillation (ENSO) predictability and its variability on different time scales. To our knowledge, this is the first assessment of ENSO predictability using a long-term ensemble hindcast with a complicated coupled general circulation model (CGCM). Our results indicate that both the dispersion component (DC) and signal component (SC) contribute to the interannual variation of ENSO predictability (measured by relative entropy). Specifically, the SC is more important for ENSO events, whereas the DC is of comparable importance for short lead times and in weak ENSO signal years. The SC dominates the seasonal variation of ENSO predictability, and an abrupt decrease in signal intensity results in the spring predictability barrier feature of ENSO. At the interdecadal scale, the SC controls the variability of ENSO predictability, while the magnitude of ENSO predictability is determined by the DC. The seasonal and interdecadal variations of ENSO predictability in the CGCM are generally consistent with results based on intermediate complexity and hybrid coupled models. However, the DC has a greater contribution in the CGCM than that in the intermediate complexity and hybrid coupled models.

Significance Statement

El Niño–Southern Oscillation (ENSO) is a prominent interannual signal in the global climate system with widespread climatic influence. Our current understanding of ENSO predictability is based mainly on long-term retrospective forecasts obtained from intermediate complexity and hybrid coupled models. Compared with those models, complicated coupled general circulation models (CGCMs) include more realistic physical processes and have the potential to reproduce the ENSO complexity. However, hindcast studies based on CGCMs have only focused on the last 20–60 years. In this study, we conducted an ensemble retrospective prediction from 1881 to 2017 using the Community Earth System Model in order to evaluate ENSO predictability and examine its variability on different time scales. To our knowledge, this is the first assessment of ENSO predictability using a long-term ensemble hindcast with a CGCM.

Open access
Dongdong Peng, Tianjun Zhou, Yong Sun, and Ailan Lin

Abstract

The first rainy season (April–June) of South China includes the phases before and after the onset of the South China Sea summer monsoon (SCSSM). Abundant moisture supply is the key dynamic process for precipitation formation. Thus, we employ the FLEXPART model to explore the corresponding moisture sources for the two phases. Before the onset of SCSSM, land regions contribute more moisture to the precipitation over South China than the ocean sources. The main source regions are Southeast Asia (27.01%), the South China Sea (25.96%), South China (11.12%), and the southern part of the northwestern Pacific (10.23%). Land sources (66.87%) play a more important role than ocean sources (33.13%) in the interannual variations, with the contributions mainly from Southeast Asia (47.56%) and the South China Sea (28.79%). After the onset of SCSSM, the climatological contribution of ocean sources is larger than that of land regions, and the main source regions are the South China Sea (20.78%), Southeast Asia (17.51%), the Bay of Bengal (13.76%), and South China (11.21%). For the interannual variations, the contributions of land sources and ocean regions are comparable, and mainly from Southeast Asia (33.53%) and the Bay of Bengal (32.26%). The moisture transports for the interannual variations in first rainy season precipitation over South China before and after the onset of SCSSM are significantly correlated with the east–west contrast of sea surface temperature anomalies over northern part of North Pacific and the uniform warming over Indian Ocean, respectively. This study provides important guidance in improving the regional precipitation predictions and understanding the water resources changes.

Open access
Boer Zhang, Marianna Linz, and Gang Chen

Abstract

The nonnormality of temperature probability distributions and the physics that drive it are important due to their relationships to the frequency of extreme warm and cold events. Here we use a conditional mean framework to explore how horizontal temperature advection and other physical processes work together to control the shape of daily temperature distributions during 1979–2019 in the ERA5 dataset for both JJA and DJF. We demonstrate that the temperature distribution in the middle and high latitudes can largely be linearly explained by the conditional mean horizontal temperature advection with the simple treatment of other processes as a Newtonian relaxation with a spatially variant relaxation time scale and equilibrium temperature. We analyze the role of different transient and stationary components of the horizontal temperature advection in affecting the shape of temperature distributions. The anomalous advection of the stationary temperature gradient has a dominant effect in influencing temperature variance, while both that term and the covariance between anomalous wind and anomalous temperature have significant effects on temperature skewness. While this simple method works well over most of the ocean, the advection–temperature relationship is more complicated over land. We classify land regions with different advection–temperature relationships under our framework, and find that for both seasons the aforementioned linear relationship can explain ∼30% of land area, and can explain either the lower or the upper half of temperature distributions in an additional ∼30% of land area. Identifying the regions where temperature advection explains shapes of temperature distributions well will help us gain more confidence in understanding the future change of temperature distributions and extreme events.

Open access
Abhishek Savita, Catia M. Domingues, Tim Boyer, Viktor Gouretski, Masayoshi Ishii, Gregory C. Johnson, John M. Lyman, Josh K. Willis, Simon J. Marsland, William Hobbs, John A. Church, Didier P. Monselesan, Peter Dobrohotoff, Rebecca Cowley, and Susan E. Wijffels

Abstract

The Earth system is accumulating energy due to human-induced activities. More than 90% of this energy has been stored in the ocean as heat since 1970, with ∼60% of that in the upper 700 m. Differences in upper-ocean heat content anomaly (OHCA) estimates, however, exist. Here, we use a dataset protocol for 1970–2008—with six instrumental bias adjustments applied to expendable bathythermograph (XBT) data, and mapped by six research groups—to evaluate the spatiotemporal spread in upper OHCA estimates arising from two choices: 1) those arising from instrumental bias adjustments and 2) those arising from mathematical (i.e., mapping) techniques to interpolate and extrapolate data in space and time. We also examined the effect of a common ocean mask, which reveals that exclusion of shallow seas can reduce global OHCA estimates up to 13%. Spread due to mapping method is largest in the Indian Ocean and in the eddy-rich and frontal regions of all basins. Spread due to XBT bias adjustment is largest in the Pacific Ocean within 30°N–30°S. In both mapping and XBT cases, spread is higher for 1990–2004. Statistically different trends among mapping methods are found not only in the poorly observed Southern Ocean but also in the well-observed northwest Atlantic. Our results cannot determine the best mapping or bias adjustment schemes, but they identify where important sensitivities exist, and thus where further understanding will help to refine OHCA estimates. These results highlight the need for further coordinated OHCA studies to evaluate the performance of existing mapping methods along with comprehensive assessment of uncertainty estimates.

Open access