Browse

You are looking at 1 - 10 of 13 items for :

  • RELAMPAGO-CACTI: High Impact Weather in Subtropical South America x
  • Refine by Access: Content accessible to me x
Clear All
Kristen L. Rasmussen, Melissa A. Burt, Angela Rowe, Rebecca Haacker, Deanna Hence, Lorena Medina Luna, Stephen W. Nesbitt, and Julie Maertens

Abstract

This article provides an overview of the Advanced Study Institute: Field Studies of Convection in Argentina (ASI-FSCA) program, a 3-week dynamic and collaborative hands-on experience that allowed 16 highly motivated and diverse graduate students from the United States to participate in the 2018–19 Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This program is unique as it represents the first effort to integrate an intensive Advanced Study Institute with a field campaign in atmospheric science. ASI-FSCA activities and successful program outcomes for five key elements are described: 1) intensive field research with field campaign instrumentation platforms; 2) recruitment of diverse graduate students who would not otherwise have opportunities to participate in intensive field research; 3) tailored curriculum focused on scientific understanding of cloud and mesoscale processes and professional/academic development topics; 4) outreach to local K–12 schools and the general public; and 5) building a collaborative international research network to promote weather and climate research. These five elements served to increase motivation and improve confidence and self-efficacy of students to participate in scientific research and field work with goals of increasing retention and a sense of belonging in STEM graduate programs and advancing the careers of students from underrepresented groups as evidenced by a formal program evaluation effort. Given the success of the ASI-FSCA program, our team strongly recommends considering this model for expanding the opportunities for a broader and more diverse student community to participate in dynamic and intensive field work in atmospheric science.

Full access
James N. Marquis, Adam C. Varble, Paul Robinson, T. Connor Nelson, and Katja Friedrich

Abstract

Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of (i) the mesoscale and boundary layer flow, and (ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary, or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3–5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1–3 km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment.

Open access
Stephen W. Nesbitt, Paola V. Salio, Eldo Ávila, Phillip Bitzer, Lawrence Carey, V. Chandrasekar, Wiebke Deierling, Francina Dominguez, Maria Eugenia Dillon, C. Marcelo Garcia, David Gochis, Steven Goodman, Deanna A. Hence, Karen A. Kosiba, Matthew R. Kumjian, Timothy Lang, Lorena Medina Luna, James Marquis, Robert Marshall, Lynn A. McMurdie, Ernani de Lima Nascimento, Kristen L. Rasmussen, Rita Roberts, Angela K. Rowe, Juan José Ruiz, Eliah F.M.T. São Sabbas, A. Celeste Saulo, Russ S. Schumacher, Yanina Garcia Skabar, Luiz Augusto Toledo Machado, Robert J. Trapp, Adam C. Varble, James Wilson, Joshua Wurman, Edward J. Zipser, Ivan Arias, Hernán Bechis, and Maxwell A. Grover

Abstract

This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in the Córdoba and Mendoza provinces in Argentina and western Rio Grande do Sul State in Brazil in 2018–19 that involved more than 200 scientists and students from the United States, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates, and other unusual lightning phenomena, but few tornadoes. The five distinct scientific foci of RELAMPAGO—convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification—are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multinational education, public outreach, and social media data gathering associated with the campaign, is summarized.

Full access
Adam C. Varble, Stephen W. Nesbitt, Paola Salio, Joseph C. Hardin, Nitin Bharadwaj, Paloma Borque, Paul J. DeMott, Zhe Feng, Thomas C. J. Hill, James N. Marquis, Alyssa Matthews, Fan Mei, Rusen Öktem, Vagner Castro, Lexie Goldberger, Alexis Hunzinger, Kevin R. Barry, Sonia M. Kreidenweis, Greg M. McFarquhar, Lynn A. McMurdie, Mikhail Pekour, Heath Powers, David M. Romps, Celeste Saulo, Beat Schmid, Jason M. Tomlinson, Susan C. van den Heever, Alla Zelenyuk, Zhixiao Zhang, and Edward J. Zipser

Abstract

The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.

Full access
Russ S. Schumacher, Deanna A. Hence, Stephen W. Nesbitt, Robert J. Trapp, Karen A. Kosiba, Joshua Wurman, Paola Salio, Martin Rugna, Adam C. Varble, and Nathan R. Kelly

Abstract

During the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations-Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO-CACTI) field experiments in 2018–19, an unprecedented number of balloon-borne soundings were collected in Argentina. Radiosondes were launched from both fixed and mobile platforms, yielding 2712 soundings during the period 15 October 2018–30 April 2019. Approximately 20% of these soundings were collected by highly mobile platforms, strategically positioned for each intensive observing period, and launching approximately once per hour. The combination of fixed and mobile soundings capture both the overall conditions characterizing the RELAMPAGO-CACTI campaign, as well as the detailed evolution of environments supporting the initiation and upscale growth of deep convective storms, including some that produced hazardous hail and heavy rainfall. Episodes of frequent convection were characterized by sufficient quantities of moisture and instability for deep convection, along with deep-layer vertical wind shear supportive of organized or rotating storms. A total of 11 soundings showed most unstable convective available potential energy (MUCAPE) exceeding 6000 J kg−1, comparable to the extreme instability observed in other parts of the world with intense deep convection. Parameters used to diagnose severe-storm potential showed that conditions were often favorable for supercells and severe hail, but not for tornadoes, primarily because of insufficient low-level wind shear. High-frequency soundings also revealed the structure and evolution of the boundary layer leading up to convection initiation, convectively generated cold pools, the South American low-level jet (SALLJ), and elevated nocturnal convection. This sounding dataset will enable improved understanding and prediction of convective storms and their surroundings in subtropical South America, as well as comparisons with other heavily studied regions such as the central United States that have not previously been possible.

Full access
Sujan Pal, Francina Dominguez, María Eugenia Dillon, Javier Alvarez, Carlos Marcelo Garcia, Stephen W. Nesbitt, and David Gochis

Abstract

Some of the most intense convective storms on Earth initiate near the Sierras de Córdoba mountain range in Argentina. The goal of the RELAMPAGO field campaign was to observe these intense convective storms and their associated impacts. The intense observation period (IOP) occurred during November–December 2018. The two goals of the hydrometeorological component of RELAMPAGO IOP were 1) to perform hydrological streamflow and meteorological observations in previously ungauged basins and 2) to build a hydrometeorological modeling system for hindcast and forecast applications. During the IOP, our team was able to construct the stage–discharge curves in three basins, as hydrological instrumentation and personnel were successfully deployed based on RELAMPAGO weather forecasts. We found that the flood response time in these river locations is typically between 5 and 6 h from the peak of the rain event. The satellite-observed rainfall product IMERG-Final showed a better representation of rain gauge–estimated precipitation, while IMERG-Early and IMERG-Late had significant positive bias. The modeling component focuses on the 48-h simulation of an extreme hydrometeorological event that occurred on 27 November 2018. Using the Weather Research and Forecasting (WRF) atmospheric model and its hydrologic component WRF-Hydro as an uncoupled hydrologic model, we developed a system for hindcast, deterministic forecast, and a 60-member ensemble forecast initialized with regional-scale atmospheric data assimilation. Critically, our results highlight that streamflow simulations using the ensemble forecasting with data assimilation provide realistic flash flood forecast in terms of timing and magnitude of the peak. Our findings from this work are being used by the water managers in the region.

Full access
T. Connor Nelson, James Marquis, Adam Varble, and Katja Friedrich

Abstract

The Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 h and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km in space and 30 min in time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free-tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow–terrain interactions may yield gravity wave activity that affects CI outcome.

Full access
Jake P. Mulholland, Stephen W. Nesbitt, Robert J. Trapp, and John M. Peters

Abstract

Orographic deep convection (DC) initiation and rapid evolution from supercells to mesoscale convective systems (MCSs) are common near the Sierras de Córdoba, Argentina, which was the focal point of the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This study used an idealized numerical model with elongated north–south terrain similar to that of the Sierras de Córdoba to address how variations in terrain height affected the environment and convective morphology. Simulations used a thermodynamic profile from a RELAMPAGO event that featured both supercell and MCS storm modes. Results revealed that DC initiated earlier in simulations with higher terrain, owing both to stronger upslope flows and standing mountain waves. All simulations resulted in supercell formation, with higher-terrain supercells initiating closer to the terrain peak and moving slower off the terrain. Higher-terrain simulations displayed increases in both low-level and deep-layer wind shear along the eastern slopes of the terrain that were related to the enhanced upslope flows, supporting stronger and wider supercell updrafts/downdrafts and a wider swath of heavy rainfall. Deeper and stronger cold pools from these wider and stronger higher-terrain supercells led to surging outflow that reduced convective available potential energy accessible to deep convective updrafts, resulting in quicker supercell demise off the terrain. Lower-terrain supercells moved quickly off the terrain, merged with weaker convective cells, and resulted in a quasi-organized MCS. These results demonstrate that terrain-induced flow modification may lead to substantial local variations in convective morphology.

Free access
Hernán Bechis, Paola Salio, and Juan José Ruiz

Abstract

Drylines have been identified as relevant synoptic-scale phenomena that frequently occur in several regions around the world. Despite previous works and the experience of local forecasters that recognizes the occurrence of drylines in Argentina and suggests its possible association with convection initiation, knowledge about the mechanisms leading to the genesis of these features is poor. This paper presents the first synoptic climatology of these drylines as well as a first approach to the understanding of the processes leading to their formation. The climatology is based on an automated algorithm for dryline identification applied to reanalysis data. We found that drylines are more frequent between the northern Patagonia plateau and the central Argentinean plains. A composite analysis is performed to analyze the processes leading to the formation of synoptic-scale drylines within this region. It was found that these drylines form in the confluence between a warm and moist air mass driven by a northwesterly flow and drier air flowing east over the northern Patagonia plateau. The dry air originates on top of the Pacific maritime boundary layer and experiences lee subsidence after crossing the Andes range creating an area of dry and warm air that is advected to the east by the westerly synoptic-scale flow, and transported downward during the day due to strong boundary layer turbulence. At the same time, surface heating over the plateau leads to substantial warming of the originally colder dry air behind the dryline, thus reversing the horizontal temperature gradient across the dryline.

Free access
Jake P. Mulholland, Stephen W. Nesbitt, and Robert J. Trapp

Abstract

Satellite- and ground-based radar observations have shown that the northern half of Argentina, South America, is a region susceptible to rapid upscale growth of deep moist convection into larger organized mesoscale convective systems (MCSs). In particular, the complex terrain of the Sierras de Córdoba is hypothesized to be vital to this upscale-growth process. A canonical orographic supercell-to-MCS transition case study was analyzed to determine the influence that complex terrain had on processes governing upscale convective growth. High-resolution numerical modeling experiments were conducted in which the terrain height of the Sierras de Córdoba was systematically modified by raising or lowering the elevation of terrain above 1000 m. The alteration of the terrain lead to both direct and indirect effects on storm morphology. A direct effect included terrain blocking of cold pools, whereas indirect effects included terrain-induced variations in pertinent storm environmental parameters (e.g., vertical wind shear, convective available potential energy). When the terrain was raised, low-level and deep-layer vertical wind shear increased, mixed-layer convective available potential energy decreased, deep moist convection initiated earlier, and cold pools were blocked and generally became stronger and deeper. The reverse occurred when the terrain was lowered, resulting in a weaker supercell that did not grow upscale into an MCS. The control simulation supercell displayed the deepest cold pool and correspondingly fastest transition from supercell to MCS, potentially revealing that the unique terrain configuration of the Sierras de Córdoba was supportive of the observed rapid upscale convective growth of this orographic supercell.

Free access