Browse

You are looking at 101 - 110 of 379 items for :

  • Earth Interactions x
  • All content x
Clear All
Aneesh Goly, Ramesh S. V. Teegavarapu, and Arpita Mondal

Abstract

Several statistical downscaling models have been developed in the past couple of decades to assess the hydrologic impacts of climate change by projecting the station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs). This paper presents and compares different statistical downscaling models that use multiple linear regression (MLR), positive coefficient regression (PCR), stepwise regression (SR), and support vector machine (SVM) techniques for estimating monthly rainfall amounts in the state of Florida. Mean sea level pressure, air temperature, geopotential height, specific humidity, U wind, and V wind are used as the explanatory variables/predictors in the downscaling models. Data for these variables are obtained from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis dataset and the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model, version 3 (CGCM3) GCM simulations. The principal component analysis (PCA) and fuzzy c-means clustering method (FCM) are used as part of downscaling model to reduce the dimensionality of the dataset and identify the clusters in the data, respectively. Evaluation of the performances of the models using different error and statistical measures indicates that the SVM-based model performed better than all the other models in reproducing most monthly rainfall statistics at 18 sites. Output from the third-generation CGCM3 GCM for the A1B scenario was used for future projections. For the projection period 2001–10, MLR was used to relate variables at the GCM and NCEP grid scales. Use of MLR in linking the predictor variables at the GCM and NCEP grid scales yielded better reproduction of monthly rainfall statistics at most of the stations (12 out of 18) compared to those by spatial interpolation technique used in earlier studies.

Full access
Pennan Chinnasamy and Jason A. Hubbart

Abstract

Riparian shallow groundwater and nutrient movement is important for aquatic and forest ecosystem health. Understanding stream water (SW)–shallow groundwater (GW) interactions is necessary for proper management of floodplain biodiversity, but it is particularly confounding in underrepresented semikarst hydrogeological systems. The Modular Three-Dimensional Finite-Difference Ground-Water Flow Model (MODFLOW) was used to simulate shallow groundwater flow and nutrient transport processes in a second-growth Ozark border forest for the 2011 water year. MODFLOW provided approximations of hydrologic head that were statistically comparable to observed data (Nash–Sutcliffe = 0.47, r 2 = 0.77, root-mean-square error = 0.61 cm, and mean difference = 0.46 cm). Average annual flow estimates indicated that 82% of the reach length was a losing stream, while the remaining 18% was gaining. The reach lost more water to the GW during summer (2405 m3 day−1) relative to fall (2184 m3 day−1), spring (2102 m3 day−1), and winter (1549 m3 day−1) seasons. Model results showed that the shallow aquifer had the highest nitrate loading during the winter season (707 kg day−1). A Particle-Tracking Model for MODFLOW (MODPATH) revealed significant spatial variations between piezometer sites (p = 0.089) in subsurface flow path and travel time, ranging from 213 m and 3.6 yr to 197 m and 11.6 yr. The current study approach is novel with regard to the use of transient flow conditions (as opposed to steady state conditions) in underrepresented semikarst geological systems of the U.S. Midwest. This study emphasizes the significance of semikarst geology in regulating SW–GW hydrologic and nutrient interactions and provides baseline information and modeling predictions that will facilitate future studies and management plans.

Full access
A. H. M. Siddique-E-Akbor, Faisal Hossain, Safat Sikder, C. K. Shum, Steven Tseng, Yuchan Yi, F. J. Turk, and Ashutosh Limaye

Abstract

The Ganges–Brahmaputra–Meghna (GBM) river basins exhibit extremes in surface water availability at seasonal to annual time scales. However, because of a lack of basinwide hydrological data from in situ platforms, whether they are real time or historical, water management has been quite challenging for the 630 million inhabitants. Under such circumstances, a large-scale and spatially distributed hydrological model, forced with more widely available satellite meteorological data, can be useful for generating high resolution basinwide hydrological state variable data [streamflow, runoff, and evapotranspiration (ET)] and for decision making on water management. The Variable Infiltration Capacity (VIC) hydrological model was therefore set up for the entire GBM basin at spatial scales ranging from 12.5 to 25 km to generate daily fluxes of surface water availability (runoff and streamflow). Results indicate that, with the selection of representative gridcell size and application of correction factors to evapotranspiration calculation, it is possible to significantly improve streamflow simulation and overcome some of the insufficient sampling and data quality issues in the ungauged basins. Assessment of skill of satellite precipitation forcing datasets revealed that the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) product of 3B42RT fared comparatively better than the Climate Prediction Center (CPC) morphing technique (CMORPH) product for simulation of streamflow. The general conclusion that emerges from this study is that spatially distributed hydrologic modeling for water management is feasible for the GBM basins under the scenario of inadequate in situ data availability. Satellite precipitation forcing datasets provide the necessary skill for water balance studies at interannual and interseasonal scales. However, further improvement in skill may be required if these datasets are to be used for flood management at daily to weekly time scales and within a data assimilation framework.

Full access
Mark R. Jury

Abstract

This study considers eastern Antilles (11°–18°N, 64°–57°W) weather and climate interactions in the context of the 2013 Christmas storm. This unseasonal event caused flash flooding in Grenada, St. Vincent, St. Lucia, Martinique, and Dominica from 24 to 25 December 2013, despite having winds <15 m s−1. The meteorological scenario and short-term forecasts are analyzed. At the low level, a convective wave propagated westward while near-equatorial upper westerly winds surged with eastward passage of a trough. The combination of tropical moisture, cyclonic vorticity, and uplift resulted in rain rates greater than 30 mm h−1 and many stations reporting 200 mm. Although forecast rainfall was low and a few hours late, weather services posted flood warnings in advance. At the climate scale, the fresh Orinoco River plume brought into the region by the North Brazil Current together with solar radiation greater than 200 W m−2, enabled sea temperatures to reach 28°C, and supplied convective available potential energy greater than 1800 J kg−1. Climate change model simulations are compared with reference fields and trends are analyzed in the eastern Antilles. While temperatures are set to increase, the frequency of flood events appears to decline in the future.

Full access
Nancy H. F. French, Donald McKenzie, Tyler Erickson, Benjamin Koziol, Michael Billmire, K. Arthur Endsley, Naomi K. Yager Scheinerman, Liza Jenkins, Mary Ellen Miller, Roger Ottmar, and Susan Prichard

Abstract

As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent approach to estimating emissions at landscape, regional, and continental scales. The system taps into data and tools developed by the U.S. Forest Service to describe fuels, fuel loadings, and fuel consumption and merges information from the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration on fire location and timing. Currently, WFEIS provides web access to Moderate Resolution Imaging Spectroradiometer (MODIS) burned area for North America and U.S. fire-perimeter maps from the Monitoring Trends in Burn Severity products from the USGS, overlays them on 1-km fuel maps for the United States, and calculates fuel consumption and emissions with an open-source version of the Consume model. Mapped fuel moisture is derived from daily meteorological data from remote automated weather stations. In addition to tabular output results, WFEIS produces multiple vector and raster formats. This paper provides an overview of the WFEIS system, including the web-based system functionality and datasets used for emissions estimates. WFEIS operates on the web and is built using open-source software components that work with open international standards such as keyhole markup language (KML). Examples of emissions outputs from WFEIS are presented showing that the system provides results that vary widely across the many ecosystems of North America and are consistent with previous emissions modeling estimates and products.

Full access
Diandong Ren and Lance M. Leslie

Abstract

As a conveyor belt transferring inland ice to ocean, ice shelves shed mass through large, systematic tabular calving, which also plays a major role in the fluctuation of the buttressing forces. Tabular iceberg calving involves two stages: first is systematic cracking, which develops after the forward-slanting front reaches a limiting extension length determined by gravity–buoyancy imbalance; second is fatigue separation. The latter has greater variability, producing calving irregularity. Whereas ice flow vertical shear determines the timing of the systematic cracking, wave actions are decisive for ensuing viscoplastic fatigue. Because the frontal section has its own resonance frequency, it reverberates only to waves of similar frequency. With a flow-dependent, nonlocal attrition scheme, the present ice model [Scalable Extensible Geoflow Model for Environmental Research-Ice flow submodel (SEGMENT-Ice)] describes an entire ice-shelf life cycle. It is found that most East Antarctic ice shelves have higher resonance frequencies, and the fatigue of viscoplastic ice is significantly enhanced by shoaling waves from both storm surges and infragravity waves (~5 × 10−3 Hz). The two largest embayed ice shelves have resonance frequencies within the range of tsunami waves. When approaching critical extension lengths, perturbations from about four consecutive tsunami events can cause complete separation of tabular icebergs from shelves. For shelves with resonance frequencies matching storm surge waves, future reduction of sea ice may impose much larger deflections from shoaling, storm-generated ocean waves. Although the Ross Ice Shelf (RIS) total mass varies little in the twenty-first century, the mass turnover quickens and the ice conveyor belt is ~40% more efficient by the late twenty-first century, reaching 70 km3 yr−1. The mass distribution shifts oceanward, favoring future tabular calving.

Full access
Scott Curtis, Douglas W. Gamble, and Jeff Popke

Abstract

This study uses empirical models to examine the potential impact of climate change, based on a range of 100-yr phase 5 of the Coupled Model Intercomparison Project (CMIP5) projections, on crop water need in Jamaica. As expected, crop water need increases with rising temperature and decreasing precipitation, especially in May–July. Comparing the temperature and precipitation impacts on crop water need indicates that the 25th percentile of CMIP5 temperature change (moderate warming) yields a larger crop water deficit than the 75th percentile of CMIP5 precipitation change (wet winter and dry summer), but the 25th percentile of CMIP5 precipitation change (substantial drying) dominates the 75th percentile of CMIP5 temperature change (extreme warming). Over the annual cycle, the warming contributes to larger crop water deficits from November to April, while the drying has a greater influence from May to October. All experiments decrease crop suitability, with the largest impact from March to August.

Full access
M. P. Maneta and N. Silverman
Full access
Olivia Kellner and Dev Niyogi

Abstract

Land surface heterogeneity affects mesoscale interactions, including the evolution of severe convection. However, its contribution to tornadogenesis is not well known. Indiana is selected as an example to present an assessment of documented tornadoes and land surface heterogeneity to better understand the spatial distribution of tornadoes. This assessment is developed using a GIS framework taking data from 1950 to 2012 and investigates the following topics: temporal analysis, effect of ENSO, antecedent rainfall linkages, population density, land use/land cover, and topography, placing them in the context of land surface heterogeneity.

Spatial analysis of tornado touchdown locations reveals several spatial relationships with regard to cities, population density, land-use classification, and topography. A total of 61% of F0–F5 tornadoes and 43% of F0–F5 tornadoes in Indiana have touched down within 1 km of urban land use and land area classified as forest, respectively, suggesting the possible role of land-use surface roughness on tornado occurrences. The correlation of tornado touchdown points to population density suggests a moderate to strong relationship. A temporal analysis of tornado days shows favored time of day, months, seasons, and active tornado years. Tornado days for 1950–2012 are compared to antecedent rainfall and ENSO phases, which both show no discernible relationship with the average number of annual tornado days. Analysis of tornado touchdowns and topography does not indicate any strong relationship between tornado touchdowns and elevation. Results suggest a possible signature of land surface heterogeneity—particularly that around urban and forested land cover—in tornado climatology.

Full access
Lauren E. Hay, Jacob LaFontaine, and Steven L. Markstrom

Abstract

The accuracy of statistically downscaled general circulation model (GCM) simulations of daily surface climate for historical conditions (1961–99) and the implications when they are used to drive hydrologic and stream temperature models were assessed for the Apalachicola–Chattahoochee–Flint River basin (ACFB). The ACFB is a 50 000 km2 basin located in the southeastern United States. Three GCMs were statistically downscaled, using an asynchronous regional regression model (ARRM), to ⅛° grids of daily precipitation and minimum and maximum air temperature. These ARRM-based climate datasets were used as input to the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, physical-process watershed model used to simulate and evaluate the effects of various combinations of climate and land use on watershed response. The ACFB was divided into 258 hydrologic response units (HRUs) in which the components of flow (groundwater, subsurface, and surface) are computed in response to climate, land surface, and subsurface characteristics of the basin. Daily simulations of flow components from PRMS were used with the climate to simulate in-stream water temperatures using the Stream Network Temperature (SNTemp) model, a mechanistic, one-dimensional heat transport model for branched stream networks.

The climate, hydrology, and stream temperature for historical conditions were evaluated by comparing model outputs produced from historical climate forcings developed from gridded station data (GSD) versus those produced from the three statistically downscaled GCMs using the ARRM methodology. The PRMS and SNTemp models were forced with the GSD and the outputs produced were treated as “truth.” This allowed for a spatial comparison by HRU of the GSD-based output with ARRM-based output. Distributional similarities between GSD- and ARRM-based model outputs were compared using the two-sample Kolmogorov–Smirnov (KS) test in combination with descriptive metrics such as the mean and variance and an evaluation of rare and sustained events. In general, precipitation and streamflow quantities were negatively biased in the downscaled GCM outputs, and results indicate that the downscaled GCM simulations consistently underestimate the largest precipitation events relative to the GSD. The KS test results indicate that ARRM-based air temperatures are similar to GSD at the daily time step for the majority of the ACFB, with perhaps subweekly averaging for stream temperature. Depending on GCM and spatial location, ARRM-based precipitation and streamflow requires averaging of up to 30 days to become similar to the GSD-based output.

Evaluation of the model skill for historical conditions suggests some guidelines for use of future projections; while it seems correct to place greater confidence in evaluation metrics which perform well historically, this does not necessarily mean those metrics will accurately reflect model outputs for future climatic conditions. Results from this study indicate no “best” overall model, but the breadth of analysis can be used to give the product users an indication of the applicability of the results to address their particular problem. Since results for historical conditions indicate that model outputs can have significant biases associated with them, the range in future projections examined in terms of change relative to historical conditions for each individual GCM may be more appropriate.

Full access