Browse

You are looking at 11 - 20 of 118,391 items for

  • All content x
Clear All
Xiaohe An, Bo Wu, Tianjun Zhou, and Bo Liu

Abstract

The interdecadal Pacific oscillation (IPO) and Atlantic multidecadal oscillation (AMO), two leading modes of decadal climate variability, are not independent. It was proposed that ENSO-like sea surface temperature (SST) variations play a central role in the Pacific responses to the AMO forcing. However, observational analyses indicate that the AMO-related SST anomalies in the tropical Pacific are far weaker than those in the extratropical North Pacific. Here, we show that SST in the North Pacific is tied to the AMO forcing by convective heating associated with precipitation over the tropical Pacific, instead of by SST there, based on an ensemble of pacemaker experiments with North Atlantic SST restored to the observation in a coupled general circulation model. The AMO modulates precipitation over the equatorial and tropical southwestern Pacific through exciting an anomalous zonal circulation and an interhemispheric asymmetry of net moist static energy input into the atmosphere. The convective heating associated with the precipitation anomalies drives SST variations in the North Pacific through a teleconnection, but it remarkably weakens the ENSO-like SST anomalies through a thermocline damping effect. This study has implications that the IPO is a combined mode generated by both AMO forcing and local air–sea interactions, but the IPO-related global warming acceleration/slowdown is independent of the AMO.

Open access
Richard Seager, Naomi Henderson, Mark Cane, Honghai Zhang, and Jennifer Nakamura

Abstract

Persistent multiyear cold states of the tropical Pacific Ocean drive hydroclimate anomalies worldwide, including persistent droughts in the extratropical Americas. Here, the atmosphere and ocean dynamics and thermodynamics of multiyear cold states of the tropical Pacific Ocean are investigated using European Centre for Medium-Range Weather Forecasts reanalyses and simplified models of the ocean and atmosphere. The cold states are maintained by anomalous ocean heat flux divergence and damped by increased surface heat flux from the atmosphere to ocean. The anomalous ocean heat flux divergence is contributed to by both changes in the ocean circulation and thermal structure. The keys are an anomalously shallow thermocline that enhances cooling by upwelling and anomalous westward equatorial currents that enhance cold advection. The thermocline depth anomalies are shown to be a response to equatorial wind stress anomalies. The wind stress anomalies are shown to be a simple dynamical response to equatorial SST anomalies as mediated by precipitation anomalies. The cold states are fundamentally maintained by atmosphere–ocean coupling in the equatorial Pacific. The physical processes that maintain the cold states are well approximated by linear dynamics for ocean and atmosphere and simple thermodynamics.

Restricted access
Tobias Goecke and Ekaterina Machulskaya

Abstract

We present a detailed evaluation of the turbulence forecast product eddy dissipation parameter (EDP) used at the Deutscher Wetterdienst (DWD). It is based on the turbulence parameterization scheme TURBDIFF, which is operational within the Icosahedral Nonhydrostatic (ICON) numerical weather prediction model used operationally by DWD. For aviation purposes, the procedure provides the cubic root of the eddy dissipation rate ε 1/3 as an overall turbulence index. This quantity is a widely used measure for turbulence intensity as experienced by aircraft. The scheme includes additional sources of turbulent kinetic energy with particular relevance to aviation, which are briefly introduced. These sources describe turbulence generation by the subgrid-scale action of wake eddies, mountain waves, and convection, as well as horizontal shear as found close to fronts or the jet stream. Furthermore, we introduce a postprocessing calibration to an empirical EDR distribution, and we demonstrate the potential as well as limitations of the final EDP-based turbulence forecast by considering several case studies of typical turbulence events. Finally, we reveal the forecasting capability of this product by verifying the model results against one year of aircraft in situ EDR measurements from commercial aircraft. We find that the forecasted EDP performs favorably when compared to the Ellrod index. In particular, the turbulence signal from deep convection, which is accounted for in the EDP product, is advantageous when spatial nonlocality is allowed in the verification procedure.

Open access
Alexander J. Ross, Ryan C. Grow, Lauren D. Hayhurst, Haley A. MacLeod, Graydon I. McKee, Kyle W. Stratton, Marissa E. Wegher, and Michael D. Rennie

Abstract

Groundhog Day is a widespread North American ritual that marks the onset of spring, with festivities centered around animals that humans believe have abilities to make seasonal predictions. Yet, the collective success of groundhog Marmota monax prognosticators has never been rigorously tested. Here, we propose the local climate-predicted phenology of early blooming spring plants (Carolina spring beauty, or Claytonia caroliniana, which overlaps in native range with groundhogs) as a novel and relevant descriptor of spring onset that can be applied comparatively across a broad geographical range. Of 530 unique groundhog-year predictions across 33 different locations, spring onset was correctly predicted by groundhogs exactly 50% of the time. While no singular groundhog predicted the timing of spring with any statistical significance, there were a handful of groundhogs with notable records of both successful and unsuccessful predictions: Essex Ed (Essex, Connecticut), Stonewall Jackson (Wantage, New Jersey), and Chuckles (Manchester, Connecticut) correctly predicted spring onset over 70% of the time. By contrast, Buckeye Chuck (Marion, Ohio), Dunkirk Dave (Dunkirk, New York), and Holland Huckleberry (Holland, Ohio) made incorrect predictions over 70% of the time. The two most widely recognized and long-tenured groundhogs in their respective countries—Wiarton Willie (Canada) and Punxsutawney Phil (United States)—had success rates of 54% and 52%, respectively, despite over 150 collective guesses. Using a novel phenological indicator of spring, this study determined, without a shadow of a doubt, that groundhog prognosticating abilities for the arrival of spring are no better than chance.

Open access
Terence J. O’Kane, Paul A. Sandery, Vassili Kitsios, Pavel Sakov, Matthew A. Chamberlain, Mark A. Collier, Russell Fiedler, Thomas S. Moore, Christopher C. Chapman, Bernadette M. Sloyan, and Richard J. Matear

Abstract

We detail the system design, model configuration, and data assimilation evaluation for the CSIRO Climate retrospective Analysis and Forecast Ensemble system, version 1 (CAFE60v1). CAFE60v1 has been designed with the intention of simultaneously generating both initial conditions for multiyear climate forecasts and a large ensemble retrospective analysis of the global climate system from 1960 to the present. Strongly coupled data assimilation (SCDA) is implemented via an ensemble transform Kalman filter in order to constrain a general circulation climate model to observations. Satellite (altimetry, sea surface temperature, sea ice concentration) and in situ ocean temperature and salinity profiles are directly assimilated each month, whereas atmospheric observations are subsampled from the JRA-55 atmospheric reanalysis. Strong coupling is implemented via explicit cross-domain covariances between ocean, atmosphere, sea ice, and ocean biogeochemistry. Atmospheric and surface ocean fields are available at daily resolution and monthly resolution for the land, subsurface ocean, and sea ice. The system produces 96 climate trajectories (state estimates) over the most recent six decades as well as a complete data archive of initial conditions, potentially enabling individual forecasts for all members each month over the 60-yr period. The size of the ensemble and application of strongly coupled data assimilation lead to new insights for future reanalyses.

Open access
Terence J. O’Kane, Paul A. Sandery, Vassili Kitsios, Pavel Sakov, Matthew A. Chamberlain, Dougal T. Squire, Mark A. Collier, Christopher C. Chapman, Russell Fiedler, Dylan Harries, Thomas S. Moore, Doug Richardson, James S. Risbey, Benjamin J. E. Schroeter, Serena Schroeter, Bernadette M. Sloyan, Carly Tozer, Ian G. Watterson, Amanda Black, Courtney Quinn, and Richard J. Matear

Abstract

The CSIRO Climate retrospective Analysis and Forecast Ensemble system, version 1 (CAFE60v1) provides a large (96 member) ensemble retrospective analysis of the global climate system from 1960 to present with sufficiently many realizations and at spatiotemporal resolutions suitable to enable probabilistic climate studies. Using a variant of the ensemble Kalman filter, 96 climate state estimates are generated over the most recent six decades. These state estimates are constrained by monthly mean ocean, atmosphere, and sea ice observations such that their trajectories track the observed state while enabling estimation of the uncertainties in the approximations to the retrospective mean climate over recent decades. For the atmosphere, we evaluate CAFE60v1 in comparison to empirical indices of the major climate teleconnections and blocking with various reanalysis products. Estimates of the large-scale ocean structure, transports, and biogeochemistry are compared to those derived from gridded observational products and climate model projections (CMIP). Sea ice (extent, concentration, and variability) and land surface (precipitation and surface air temperatures) are also compared to a variety of model and observational products. Our results show that CAFE60v1 is a useful, comprehensive, and unique data resource for studying internal climate variability and predictability, including the recent climate response to anthropogenic forcing on multiyear to decadal time scales.

Open access
Cheng Shen, Jinlin Zha, Jian Wu, and Deming Zhao

Abstract

Investigations of variations and causes of near-surface wind speed (NWS) further understanding of atmospheric changes and improve the ability of climate analysis and projections. NWS varies on multiple temporal scales; however, the centennial-scale variability in NWS and associated causes over China remains unknown. In this study, we employ the European Centre for Medium-Range Weather Forecasts (ECMWF) Twentieth Century Reanalysis (ERA-20C) to study the centennial-scale changes in NWS from 1900 to 2010. Meanwhile, a forward stepwise regression algorithm is used to reveal the relationships between NWS and large-scale ocean–atmosphere circulations. The results show three unique periods in annual mean NWS over China from 1900 to 2010. The annual mean NWS displayed decreasing trends of −0.87% and −11.75% decade−1 from 1900 to 1925 and from 1957 to 2010, respectively, which were caused by the decreases in the days with strong winds, with trends of −6.64 and −4.66 days decade−1, respectively. The annual mean NWS showed an upward trend of 55.47% decade−1 from 1926 to 1956, which was caused by increases in the days with moderate (0.43 days decade−1) and strong winds (23.55 days decade−1). The reconstructed wind speeds based on forward stepwise regression algorithm matched well with the original wind speeds; therefore, the decadal changes in NWS over China at the centennial scale were mainly induced by large-scale ocean–atmosphere circulations, with the total explanation power of 66%. The strongest explanation power was found in winter (74%), and the weakest explanation power was found in summer (46%).

Open access
Ying Zhang, Yan Du, Tangdong Qu, Yu Hong, Catia M. Domingues, and Ming Feng

Abstract

The Subantarctic Mode Water (SAMW) plays an essential role in the global heat, freshwater, carbon, and nutrient budgets. In this study, decadal changes in the SAMW properties in the southern Indian Ocean (SIO) and associated thermodynamic and dynamic processes are investigated during the Argo era. Both temperature and salinity of the SAMW in the SIO show increasing trends during 2004–18. A two-layer structure of the SAMW trend, with more warm and salty light SAMW but less cool and fresh dense SAMW, is identified. The heaving and spiciness processes are important but have opposite contributions to the temperature and salinity trends of the SAMW. A significant deepening of isopycnals (heaving), peaking at σ θ = 26.7–26.8 kg m−3 in the middle layer of the SAMW, expands the warm and salty light SAMW and compresses the cool and fresh dense SAMW corresponding to the change in subduction rate during 2004–18. The change in the SAMW subduction rate is dominated by the change in the mixed layer depth, controlled by the changes in wind stress curl and surface buoyancy fluxes. An increase in the mixed layer temperature due to weakening northward Ekman transport of cool water leads to a lighter surface density in the SAMW formation region. Consequently, density outcropping lines in the SAMW formation region shift southward and favor the intrusion and entrainment of the cooler and fresher Antarctic surface water from the south, contributing to the cooling/freshening trend of isopycnals (spiciness). Subsequently, the cooler and fresher SAMW spiciness anomalies spread in the SIO via the subtropical gyre.

Restricted access
K. Fagiewicz, P. Churski, T. Herodowicz, P. Kaczmarek, P. Lupa, J. Morawska-Jancelewicz, and A. Mizgajski

Abstract

This study determines the conditions and provides a recommendation for fostering cocreation for climate change adaptation and mitigation (CCA&M). In postulating that insufficient cocreation by stakeholders in the quadruple helix model is an important factor contributing to the low effectiveness of climate actions in the regions, we have focused our research on identifying real stakeholder engagement in climate action and identifying the needs, barriers, and drivers for strengthening the cocreation process. We identified the needs for action highlighted by stakeholders as having an impact on reducing barriers and stimulating drivers. We treated the identified needs for action as deep leverage points (intent and design) focused on three realms—knowledge, values, and institutions—in which engagement and cocreation can be strengthened and have the potential to increase the effectiveness of climate action taken by stakeholders within our quadruple helix. We recommend knowledge-based cocreation, which puts the importance of climate action in the value system and leads to paradigm reevaluation. The implementation of the identified needs for action requires the support of institutions, whereby they develop standards of cooperation and mechanisms for their implementation as a sustainable framework for stakeholder cooperation. The research has proved how the quadruple helix operates for climate action in the Poznań Agglomeration. We believe that this case study can be a reference point for regions at a similar level of development, and the methods used and results obtained can be applied in similar real contexts to foster local stakeholders in climate action.

Open access
David T. Bolvin, George J. Huffman, Eric J. Nelkin, and Jackson Tan

Abstract

Satellite-based precipitation estimates provide valuable information where surface observations are not readily available, especially over the large expanses of the ocean where in situ precipitation observations are very sparse. This study compares monthly precipitation estimates from the Integrated Multisatellite Retrievals for GPM (IMERG) with gauge observations from 37 low-lying atolls from the Pacific Rainfall Database for the period June 2000–August 2020. Over the analysis period, IMERG estimates are slightly higher than the atoll observations by 0.67% with a monthly correlation of 0.68. Seasonally, DJF shows excellent agreement with a near-zero bias, while MAM shows IMERG is low by 4.6%, and JJA is high by 1.2%. SON exhibits the worst performance, with IMERG overestimating by 6.5% compared to the atolls. The seasonal correlations are well contained in the range 0.67–0.72, with the exception of SON at 0.62. Furthermore, SON has the highest RMSE at 4.70 mm day−1, making it the worst season for all metrics. Scatterplots of IMERG versus atolls show IMERG, on average, is generally low for light precipitation accumulations and high for intense precipitation accumulations, with best agreement at intermediate rates. Seasonal variations exist at light and intermediate rate accumulations, but IMERG consistently overestimates at intense precipitation rates. The differences between IMERG and atolls vary over time but do not exhibit any discernable trend or dependence on atoll population. The PACRAIN atoll gauges are not wind-loss corrected, so application of an appropriate adjustment would increase the precipitation amounts compared to IMERG. These results provide useful insight to users as well as valuable information for future improvements to IMERG.

Restricted access