Browse

You are looking at 11 - 20 of 40 items for :

  • Terrain-Induced Rotor Experiment (T-Rex) x
  • Refine by Access: All Content x
Clear All
Željko Večenaj, Stephan F. J. De Wekker, and Vanda Grubišić

Abstract

A case study of mountain-wave-induced turbulence observed during the Terrain-Induced Rotor Experiment (T-REX) in Owens Valley, California, is presented. During this case study, large spatial and temporal variability in aerosol backscatter associated with mountain-wave activity was observed in the valley atmosphere by an aerosol lidar. The corresponding along- and cross-valley turbulence structure was investigated using data collected by three 30-m flux towers equipped with six levels of ultrasonic anemometers. Time series of turbulent kinetic energy (TKE) show higher levels of TKE on the sloping western part of the valley when compared with the valley center. The magnitude of the TKE is highly dependent on the averaging time on the western slope, however, indicating that mesoscale transport associated with mountain-wave activity is important here. Analysis of the TKE budget shows that in the central parts of the valley mechanical production of turbulence dominates and is balanced by turbulent dissipation, whereas advective effects appear to play a dominant role over the western slope. In agreement with the aerosol backscatter observations, spatial variability of a turbulent-length-scale parameter suggests the presence of larger turbulent eddies over the western slope than along the valley center. The data and findings from this case study can be used to evaluate the performance of turbulence parameterization schemes in mountainous terrain.

Full access
Ivana Stiperski and Vanda Grubišić

Abstract

Trapped lee wave interference over double bell-shaped obstacles in the presence of surface friction is examined. Idealized high-resolution numerical experiments with the nonhydrostatic Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) are performed to examine the influence of a frictional boundary layer and nonlinearity on wave interference and the impact of interference on wave-induced boundary layer separation and the formation of rotors.

The appearance of constructive and destructive interference, controlled by the ratio of the ridge separation distance to the intrinsic horizontal wavelength of lee waves, is found to be predicted well by linear interference theory with orographic adjustment. The friction-induced shortening of intrinsic wavelength displays a strong indirect effect on wave interference. For twin peak orography, the interference-induced variation of wave amplitude is smaller than that predicted by linear theory. The interference is found to affect the formation and strength of rotors most significantly in the lee of the downstream peak; destructive interference suppresses the formation and strength of rotors there, whereas results for constructive interference closely parallel those for a single mountain. Over the valley, under both constructive and destructive interference, rotors are weaker compared to those in the lee of a single ridge while their strength saturates in the finite-amplitude flow regime.

Destructive interference is found to be more susceptible to nonlinear effects, with both the orographic adjustment and surface friction displaying a stronger effect on the flow in this state. “Complete” destructive interference, in which waves almost completely cancel out in the lee of the downstream ridge, develops for certain ridge separation distances but only for a downstream ridge smaller than the upstream one.

Full access
Stephen A. Cohn, Vanda Grubiššićć, and William O. J. Brown

Abstract

A network of three boundary layer radar wind profilers is used to study characteristics of mountain waves and rotors and to explore the utility of such a network. The data employed were collected as part of the Terrain-Induced Rotor Experiment (T-REX), which took place in Owens Valley, California, in early 2006. The wind profilers provide a continuous time––height representation of wave and rotor structure. During intensive observing period 3 (IOP 3), the profiler network was positioned in an L-shaped configuration, capturing key features of the mountain waves and rotor, including the boundary layer vortex sheet (or shear layer), turbulence within this shear layer, the classical lower turbulence zone (LTZ), and wave motion above the LTZ. Observed features were found to be in good agreement with recent high-resolution numerical simulations. Using the wind profiler with superior time resolution (Multiple Antenna Profiler Radar), a series of updraft––downdraft couplets were observed beneath the first downwind wave crest. These are interpreted as signatures of subrotors. Such detailed observations of subrotors are rare, even though subrotors are believed to be a common feature of rotor circulations in Owens Valley. During IOP 6, the network was repositioned to form a line across the valley. A simple algorithm was used to determine the amplitude, wavelength, and phase of the primary wave over the valley and to observe their changes over time and height. In the IOP-6 case, the wavelength increased over time, the phase indicated an eastward-shifting wave crest, and the amplitude increased with height and also varied over time.

Full access
Qingfang Jiang, Ming Liu, and James D. Doyle

Abstract

Fine dust particles emitted from Owens (dry) Lake in California documented during the Terrain-Induced Rotor Experiment (T-REX) of 2006 have been examined using surface observations and a mesoscale aerosol model. Air quality stations around Owens (dry) Lake observed dramatic temporal and spatial variations of surface winds and dust particulate concentration. The hourly particulate concentration averaged over a 2-month period exhibits a strong diurnal variation with a primary maximum in the afternoon, coincident with a wind speed maximum. The strongest dust event documented during the 2-month-long period, with maximum hourly and daily average particulate concentrations of 7000 and 1000 μg m−3, respectively, is further examined using output from a high-resolution mesoscale aerosol model simulation. In the morning, with the valley air decoupled from the prevailing westerlies (i.e., cross valley) above the mountaintop, fine particulates are blown off the dry lake bed by moderate up-valley winds and transported along the valley toward northwest. The simulated strong westerlies reach the western part of the valley in the afternoon and more fine dust is scoured off Owens (dry) Lake than in the morning. Assisted by strong turbulence and wave-induced vertical motion in the valley, the westerlies can transport a substantial fraction of the particulate mass across the Inyo Mountains into Death Valley National Park.

Full access
James D. Doyle, Qingfang Jiang, Ronald B. Smith, and Vanda Grubišić

Abstract

Measurements from the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) Gulfstream V (G-V) obtained during the recent Terrain-Induced Rotor Experiment (T-REX) indicate marked differences in the character of the wave response between repeated flight tracks across the Sierra Nevada, which were separated by a distance of approximately 50 km. Observations from several of the G-V research flights indicate that the vertical velocities in the primary wave exhibited variations up to a factor of 2 between the southern and northern portions of the racetrack flight segments in the lower stratosphere, with the largest amplitude waves most often occurring over the southern flight leg, which has a terrain maximum that is 800 m lower than the northern leg. Multiple racetracks at 11.7- and 13.1-km altitudes indicate that these differences were repeatable, which is suggestive that the deviations were likely due to vertically propagating mountain waves that varied systematically in amplitude rather than associated with transients. The cross-mountain horizontal velocity perturbations are also a maximum above the southern portion of the Sierra Nevada ridge.

Real data and idealized nonhydrostatic numerical model simulations are used to test the hypothesis that the observed variability in the wave amplitude and characteristics in the along-barrier direction is a consequence of blocking by the three-dimensional Sierra Nevada and the Coriolis effect. The numerical simulation results suggest that wave launching is sensitive to the overall three-dimensional characteristics of the Sierra Nevada barrier, which has an important impact on the wave amplitude and characteristics in the lower stratosphere. Real-time high-resolution Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) forecasts successfully capture the along-barrier variations in the wave amplitude (using vertical velocity as a proxy) as well as skillfully distinguishing between large- and small-amplitude stratospheric wave events during T-REX.

Full access
Bryan K. Woods and Ronald B. Smith

Abstract

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressure–velocity wavelet cross-spectra) provide a more powerful tool for locating and classifying different types of mountain waves. In the first part of the paper, pressure–velocity cross-spectra using various linear mountain-wave solutions are shown to be capable of disentangling collocated waves with different propagation directions and wavelength. A field of group velocity vectors can also be determined.

In the second part, the energy flux wavelet technique is applied to five cases of mountain waves entering the stratosphere from the Terrain-Induced Rotor Experiment (T-REX) in 2006. Perturbation pressure along the flight track is determined using aircraft static pressure corrected hydrostatically with GPS altitude. In four of the cases, collocated long up-propagating and short down-propagating waves are seen in the stratosphere. These waves have strong, but opposite, pw′ cospectra. In one of these cases, a patch of turbulence is collocated with the up and down waves. In two other cases, trapped waves riding on the tropopause inversion layer (TIL) are seen. These trapped waves have pw′ quadrature spectra that reverse sign across the tropopause. These newly discovered wave types may arise from secondary wave generation (i.e., a nonlinear transfer of energy from the long vertically propagating waves to shorter modes).

Full access
Georg J. Mayr and Laurence Armi

Abstract

The potential for a stably stratified air mass upstream of the Sierra Nevada (California) to descend as foehn into the nearly 3-km-deep Owens Valley was studied for the 2 March 2006 case with observations from sondes, weather stations, and two aircraft flights. While upstream conditions remained almost unchanged throughout the day, strong diurnal heating on the downstream side warmed the valley air mass sufficiently to permit flow through the passes to descend to the valley floor only in the late afternoon. Potential temperatures of air crossing the crest were too warm to descend past a virtual floor formed by the strong potential temperature step at the top of the valley air mass, the height of which changed throughout the day primarily due to diurnal heating in the valley. The descending stably stratified flow and its rebound with vertical velocities as high as 8 m s−1 were shaped by the underlying topography and the virtual valley floor.

Full access
Qingfang Jiang, James D. Doyle, Vanda Grubišić, and Ronald B. Smith

Abstract

Characteristics of turbulence in the lower and middle troposphere over Owens Valley have been examined using aircraft in situ measurements obtained from the Terrain-Induced Rotor Experiment. The two events analyzed in this study are characterized by a deep turbulent layer from the valley floor up to the midtroposphere associated with the interaction between trapped waves and an elevated shear layer. Kelvin–Helmholtz (KH) instability develops above the mountaintop level and often along the wave crests where the Richardson number is reduced. The turbulence induced by KH instability is characterized by a progressive downscale energy cascade, a well-defined inertial subrange up to 1 km, and large eddies with vertical to horizontal aspect ratios less than unity. The turbulence below the mountaintop level is largely shear induced, associated with wave steepening and breaking, and is more isotropic. Evaluation of structure functions indicates that while the turbulence energy cascade is predominately downscale, upscale energy transfer exists with horizontal scales from a few hundred meters to a few kilometers because of the transient energy dispersion of large eddies generated by KH instability and gravity wave steepening or breaking.

Full access
Michael Hill, Ron Calhoun, H. J. S. Fernando, Andreas Wieser, Andreas Dörnbrack, Martin Weissmann, Georg Mayr, and Robert Newsom

Abstract

Dual-Doppler analysis of data from two coherent lidars during the Terrain-Induced Rotor Experiment (T-REX) allows the retrieval of flow structures, such as vortices, during mountain-wave events. The spatial and temporal resolution of this approach is sufficient to identify and track vortical motions on an elevated, cross-barrier plane in clear air. Assimilation routines or additional constraints such as two-dimensional continuity are not required. A relatively simple and quick least squares method forms the basis of the retrieval. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain–wave–boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Generally, observations suggest two classes of vortical motions: rotors and small-scale vortical structures. These two structures differ in scale and behavior. The level of coordination of the two lidars and the nature of the output (i.e., in range gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.

Full access
Martin Weissmann, Andreas Dörnbrack, and James D. Doyle

Abstract

A method is presented to compute the spanwise vorticity in polar coordinates from 2D vertical cross sections of high-resolution line-of-sight Doppler wind lidar observations. The method uses the continuity equation to derive the velocity component perpendicular to the observed line-of-sight velocity, which then yields the spanwise vorticity component. The results of the method are tested using a ground-based Doppler lidar, which was deployed during the Terrain-Induced Rotor Experiment (T-REX). The resulting fields can be used to identify and quantify the strength and size of vortices, such as those associated with atmospheric rotors. Furthermore, they may serve to investigate the dynamics and evolution of vortices and to evaluate numerical simulations. A demonstration of the method and comparison with high-resolution numerical simulations reveals that the derived vorticity can explain 66% of the mean-square vorticity fluctuations, has a reasonably skillful magnitude, exhibits no significant bias, and is in qualitative agreement with model-derived vorticity.

Full access