Browse

You are looking at 81 - 90 of 117,964 items for

  • All content x
Clear All
Peng Wang, James C. McWilliams, and Yusuke Uchiyama

Abstract

Coastal fronts impact cross-shelf exchange of materials, such as plankton and nutrients, which are important to the ecosystems in continental shelves. Here using numerical simulation we demonstrate a nearshore front induced by wave streaming. Wave streaming is a bottom Eulerian current along the surface wave direction, and it is caused by the wave bottom dissipation. Wave streaming drives a Lagrangian overturning circulation in the inner shelf and pumps up deep and cold water into the overturning circulation. The water inside the overturning circulation is quickly mixed and cooled because of the wave streaming-enhanced viscosity. However, the offshore water outside the overturning circulation remains stratified and warmer. Hence, a front develops between the water inside and outside the overturning circulation. The front is unstable and generates submesoscale shelf eddies, which lead the offshore transport across the front. This study presents a new mechanism for coastal frontogenesis.

Restricted access
Xin Xu, Runqiu Li, Miguel A. C. Teixeira, and Yixiong Lu

Abstract

This work studies nonhydrostatic effects (NHE) on the momentum flux of orographic gravity waves (OGWs) forced by isolated three-dimensional orography. Based on linear wave theory, an asymptotic expression for low horizonal Froude number (Fr=U2+(γV)2Na where (U, V) is the mean horizontal wind, γ and a are the orography anisotropy and half-width and N is the buoyancy frequency) is derived for the gravity wave momentum flux (GWMF) of vertically-propagating waves. According to this asymptotic solution, which is quite accurate for any value of Fr, NHE can be divided into two terms (NHE1 and NHE2). The first term contains the high-frequency parts of the wave spectrum that are often mistaken as hydrostatic waves, and only depends on Fr. The second term arises from the difference between the dispersion relationships of hydrostatic and nonhydrostatic OGWs. Having an additional dependency on the horizontal wind direction and orography anisotropy, this term can change the GWMF direction. Examination of NHE for OGWs forced by both circular and elliptical orography reveals that the GWMF is reduced as Fr increases, at a faster rate than for two-dimensional OGWs forced by a ridge. At low Fr, the GWMF reduction is mostly attributed to the NHE2 term, whereas the NHE1 term starts to dominate above about Fr = 0.4. The behavior of NHE is mainly determined by Fr, while horizontal wind direction and orography anisotropy play a minor role. Implications of the asymptotic GWMF expression for the parameterization of nonhydrostatic OGWs in high-resolution and/or variable-resolution models are discussed.

Restricted access
Evan A. Kalina, Isidora Jankov, Trevor Alcott, Joseph Olson, Jeffrey Beck, Judith Berner, David Dowell, and Curtis Alexander

Abstract

The High-Resolution Rapid Refresh Ensemble (HRRRE) is a 36-member ensemble analysis system with nine forecast members that utilizes the Advanced Research Weather Research and Forecasting (ARW-WRF) dynamic core and the physics suite from the operational Rapid Refresh/High-Resolution Rapid Refresh deterministic modeling system. A goal of HRRRE development is a system with sufficient spread amongst members, comparable in magnitude to the random error in the ensemble mean, to represent the range of possible future atmospheric states. HRRRE member diversity has traditionally been obtained by perturbing the initial and lateral boundary conditions of each member, but recent development has focused on implementing stochastic approaches in HRRRE to generate additional spread. These techniques were tested in retrospective experiments and in the May 2019 Hazardous Weather Testbed Spring Experiment (HWT-SE). Results show a 6–25% increase in the ensemble spread in 2-m temperature, 2-m mixing ratio, and 10-m wind speed when stochastic parameter perturbations are used in HRRRE (HRRRE-SPP). Case studies from HWT-SE demonstrate that HRRRE-SPP performed similar to or better than the operational High-Resolution Ensemble Forecast system version 2 (HREFv2) and the non-stochastic HRRRE. However, subjective evaluations provided by HWT-SE forecasters indicated that overall, HRRRE-SPP predicted lower probabilities of severe weather (using updraft helicity as a proxy) compared to HREFv2. A statistical analysis of the performance of HRRRE-SPP and HREFv2 from the 2019 summer convective season supports this claim, but also demonstrates that the two systems have similar reliability for prediction of severe weather using updraft helicity.

Open access
Dong Wan Kim and Sukyoung Lee

Abstract

This study examines the role of the latent heating in exciting the upper-level circulation anomaly which destructively interferes with the climatological stationary wave in the Western Hemisphere during boreal summer. This destructive interference pattern closely resembles the circulation trend which is known to be responsible for surface heat extreme trends. To investigate the mechanism behind this circulation anomaly, daily stationary-transient wave interference and related meteorological variables are analyzed using reanalysis data for the period of 1979-2017. Numerical model simulations forced by reanalysis heating anomalies indicate that the destructive interference pattern is most effectively excited by latent heating anomalies over the North Pacific and eastern Canada. The North Pacific heating anomaly drives circulation anomalies that not only resemble the destructive interference pattern, but also transport moisture into eastern Canada. The resulting latent heating over eastern Canada drives circulation that further reinforces the destructive interference pattern which includes a prominent high pressure system over Greenland. Tropical heating also plays a role in driving the destructive interference pattern. On intraseasonal time scales, the destructive interference pattern is preceded by suppressed Indo-western Pacific heating and enhanced North American monsoon heating. On decadal time scales, both heating centers have strengthened, but the trend of the North American monsoon heating was greater than that of the Indo-Western Pacific heating. These uneven heating trends help explain the resemblance between the destructive interference pattern and the circulation trend over the Western Hemisphere.

Restricted access
Yuwei Wang and Yi Huang

Abstract

An atmospheric global climate model (GCM) and its associated single-column model are used to study the tropical upper tropospheric warming and elucidate how different processes drive this warming. In this modeling framework, on average the direct radiative process accounts for 13% of the total warming. The radiation increases the atmospheric lapse rate and triggers more convection, which further produces 74% of the total warming. The rest 13% is attributable to the circulation adjustment. The relative importance of these processes differs in different regions. In the deep tropics, the radiative-convective adjustment produces the most significant warming and accounts for almost 100% of the total warming. In the subtropics, the radiative-convective adjustment accounts for 73% of the total warming and the circulation adjustment plays a more important role than in the deep tropics, especially at the levels above 200 hPa. When the lateral boundary conditions, i.e. the temperature and water vapor advections, are held fixed in single-column simulations, the tropospheric relative humidity significantly increases in the radiative-convective adjustment in response to the surface warming. This result, in contrast to the relative humidity conservation behavior in the GCM, highlights the importance of circulation adjustment in maintaining the constant relative humidity. The tropical upper tropospheric warming in both the full GCM and the single-column simulations is found to be less strong than the warming predicted by reference moist adiabats. This evidences that the sub-moist-adiabat warming occurs even without the dilution effect of the large-scale circulation adjustment.

Restricted access
Ganesh Gopalakrishnan, Bruce D. Cornuelle, Matthew R. Mazloff, Peter F. Worcester, and Matthew A. Dzieciuch

Abstract

A strongly nonlinear eddy field is present in and around the Subtropical Countercurrent in the Northern Philippine Sea (NPS). A regional implementation of the Massachusetts Institute of Technology general circulation model–Estimating the Circulation and Climate of the Ocean four-dimensional variational (MITgcm-ECCO 4DVAR) assimilation system is found to be able to produce a series of two-month-long dynamically-consistent optimized state estimates between April 2010 and April 2011 for the eddy-rich NPS region. The assimilation provides a stringent dynamical test of the model, showing that a free run of the model forced using adjusted controls remains consistent with the observations for two months. The 4DVAR iterative optimization reduced the total cost function for the observations and controls by 40–50% from the reference solution, initialized using the Hybrid Coordinate Ocean Model 1/12° global daily analysis, achieving residuals approximately equal to the assumed uncertainties for the assimilated observations. The state estimates are assessed by comparing with assimilated and withheld observations and also by comparing one-month model forecasts with future data. The state estimates and forecasts were more skillful than model persistence and the reference solutions. Finally, the continuous state estimates were used to detect and track the eddies, analyze their structure, and quantify their vertically-integrated meridional heat and salt transports.

Restricted access
Catherine E. Finkenbiner, Stephen P. Good, Scott T. Allen, Richard P. Fiorella, and Gabriel J. Bowen

Abstract

Sampling intervals of precipitation geochemistry measurements are often coarser than those required by fine-scale hydrometeorological models. This study presents a statistical method to temporally downscale geochemical tracer signals in precipitation so that they can be used in high-resolution, tracer-enabled applications. In this method, we separated the deterministic component of the time series and the remaining daily stochastic component, which was approximated by a conditional multivariate Gaussian distribution. Specifically, statistics of the stochastic component could be explained from coarser data using a newly identified power-law decay function, which relates data aggregation intervals to changes in tracer concentration variance and correlations with precipitation amounts. These statistics were used within a copula framework to generate synthetic tracer values from the deterministic and stochastic time series components based on daily precipitation amounts. The method was evaluated at 27 sites located worldwide using daily precipitation isotope ratios, which were aggregated in time to provide low resolution testing datasets with known daily values. At each site, the downscaling method was applied on weekly, biweekly and monthly aggregated series to yield an ensemble of daily tracer realizations. Daily tracer concentrations downscaled from a biweekly series had average (+/- standard deviation) absolute errors of 1.69‰ (1.61‰) for δ2H and 0.23‰ (0.24‰) for δ18O relative to observations. The results suggest coarsely sampled precipitation tracers can be accurately downscaled to daily values. This method may be extended to other geochemical tracers in order to generate downscaled datasets needed to drive complex, fine-scale models of hydrometeorological processes.

Restricted access
Abedeh Abdolghafoorian and Paul A. Dirmeyer

Abstract

The interactions between land and atmosphere (with terrestrial and atmospheric coupling segments) play a significant role in weather and climate. A predominant segment of land-atmosphere (L-A) feedbacks is the coupling between soil moisture (SM) and surface heat fluxes, the terrestrial coupling leg. The lack of high-quality long-term globally distributed observations, however, has hindered a robust, realistic identification of the terrestrial leg strength on a global scale. This exploratory study provides insight into how SM signals are translated into surface flux signals through the construction of a global depiction of the terrestrial leg from several recently developed global, gridded, observationally- and satellite-based data sets. The feasibility of producing global gridded estimates of L-A coupling metrics is explored. Five weather and climate models used for subseasonal to seasonal forecasting are confronted with the observational estimates to discern discrepancies that may affect their ability to predict phenomena related to L-A feedbacks, such as drought or heat waves. The terrestrial feedback leg from observations corroborates the “hot spots” of L-A coupling found in modeling studies, but the variances in daily time series of surface fluxes differ markedly. Better agreement and generally higher confidence are seen in metrics using latent heat flux than sensible heat flux. Observational metrics allow for clear stratification of model fidelity that is consistent across seasons, despite observational uncertainty. The results highlight the impact of SM on partitioning available surface energy and illustrate the potential of global observationally-based data sets for the assessment of such relationships in weather and climate models.

Restricted access
Xubin Zhang

Abstract

This study examines the case dependence of the multiscale characteristics of initial condition (IC) and model physics (MO) perturbations and their interactions in a convection-permitting ensemble prediction system (CPEPS), focusing on the 12-h forecasts of precipitation perturbation energy. The case dependence of forecast performances of various ensemble configurations is also examined to gain guidance for CPEPS design. Heavy-rainfall cases over Southern China during the Southern China Monsoon Rainfall Experiment (SCMREX) in May 2014 were discriminated between the strongly and weakly forced events in terms of synoptic-scale forcing, each of which included 10 cases. In the cases with weaker forcing, MO perturbations showed larger influences while the enhancements of convective activities relative to the control member due to IC perturbations were less evident, leading to smaller dispersion reduction due to adding MO perturbations to IC perturbations. Such dispersion reduction was more sensitive to IC and MO perturbation methods in the weakly and strongly forced cases, respectively. The dispersion reduction improved the probabilistic forecasts of precipitation, with more evident improvements in the cases with weaker forcing. To improve the benefits of dispersion reduction in forecasts, it is instructive to elaborately consider the case dependence of dispersion reduction, especially the various sensitivities of dispersion reduction to different-source perturbation methods in various cases, in CPEPS design.

Restricted access
Daeho Jin, Lazaros Oreopoulos, Dongmin Lee, Jackson Tan, and Nayeong Cho

Abstract

In order to better understand cloud-precipitation relationships, we extend the concept of cloud regimes (CRs) developed from two-dimensional joint histograms of cloud optical thickness and cloud top pressure from the Moderate Resolution Imaging Spectroradiometer (MODIS), to include precipitation information. Taking advantage of the high-resolution Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation dataset, we derive cloud-precipitation “hybrid” regimes by implementing a k-means clustering algorithm with advanced initialization and objective measures to determine the optimal number of clusters. By expressing the variability of precipitation rates within 1-degree grid cells as histograms and varying the relative weight of cloud and precipitation information in the clustering algorithm, we obtain several editions of hybrid cloud-precipitation regimes (CPRs), and examine their characteristics.

In the deep tropics, when precipitation is weighted weakly, the cloud part centroids of the hybrid regimes resemble their counterparts of cloud-only regimes, but combined clustering tightens the cloud-precipitation relationship by decreasing each regime’s precipitation variability. As precipitation weight progressively increases, the shape of the cloud part centroids becomes blunter, while the precipitation part sharpens. When cloud and precipitation are weighted equally, the CPRs representing high clouds with intermediate to heavy precipitation exhibit distinct enough features in the precipitation parts of the centroids to allow us to project them onto the 30-min IMERG domain. Such a projection overcomes the temporal sparseness of MODIS cloud observations associated with substantial rainfall, suggesting great application potential for convection-focused studies where characterization of the diurnal cycle is essential.

Restricted access