You are looking at 1 - 3 of 3 items for :

  • Bulletin of the American Meteorological Society x
  • Plains Elevated Convection At Night (PECAN) x
  • All content x
Clear All
Tammy M. Weckwerth, John Hanesiak, James W. Wilson, Stanley B. Trier, Samuel K. Degelia, William A. Gallus Jr., Rita D. Roberts, and Xuguang Wang


Nocturnal convection initiation (NCI) is more difficult to anticipate and forecast than daytime convection initiation (CI). A major component of the Plains Elevated Convection at Night (PECAN) field campaign in the U.S. Great Plains was to intensively sample NCI and its near environment. In this article, we summarize NCI types observed during PECAN: 1 June–16 July 2015. These NCI types, classified using PECAN radar composites, are associated with 1) frontal overrunning, 2) the low-level jet (LLJ), 3) a preexisting mesoscale convective system (MCS), 4) a bore or density current, and 5) a nocturnal atmosphere lacking a clearly observed forcing mechanism (pristine). An example and description of each of these different types of PECAN NCI events are presented. The University of Oklahoma real-time 4-km Weather Research and Forecasting (WRF) Model ensemble forecast runs illustrate that the above categories having larger-scale organization (e.g., NCI associated with frontal overrunning and NCI near a preexisting MCS) were better forecasted than pristine. Based on current knowledge and data from PECAN, conceptual models summarizing key environmental features are presented and physical processes underlying the development of each of these different types of NCI events are discussed.

Full access
Kevin R. Haghi, Bart Geerts, Hristo G. Chipilski, Aaron Johnson, Samuel Degelia, David Imy, David B. Parsons, Rebecca D. Adams-Selin, David D. Turner, and Xuguang Wang


There has been a recent wave of attention given to atmospheric bores in order to understand how they evolve and initiate and maintain convection during the night. This surge is attributable to data collected during the 2015 Plains Elevated Convection at Night (PECAN) field campaign. A salient aspect of the PECAN project is its focus on using multiple observational platforms to better understand convective outflow boundaries that intrude into the stable boundary layer and induce the development of atmospheric bores. The intent of this article is threefold: 1) to educate the reader on current and future foci of bore research, 2) to present how PECAN observations will facilitate aforementioned research, and 3) to stimulate multidisciplinary collaborative efforts across other closely related fields in an effort to push the limitations of prediction of nocturnal convection.

Open access
Bart Geerts, David Parsons, Conrad L. Ziegler, Tammy M. Weckwerth, Michael I. Biggerstaff, Richard D. Clark, Michael C. Coniglio, Belay B. Demoz, Richard A. Ferrare, William A. Gallus Jr., Kevin Haghi, John M. Hanesiak, Petra M. Klein, Kevin R. Knupp, Karen Kosiba, Greg M. McFarquhar, James A. Moore, Amin R. Nehrir, Matthew D. Parker, James O. Pinto, Robert M. Rauber, Russ S. Schumacher, David D. Turner, Qing Wang, Xuguang Wang, Zhien Wang, and Joshua Wurman


The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.

To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.

Full access